|

New Circuit Solutions in Designing Functional Digital-to-Analog Converters for the Phase Measurement Systems

Authors: Fedorov  S.V. Published: 27.01.2025
Published in issue: #4(149)/2024  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Information-Measuring and Control Systems  
Keywords: information measurement systems, functional converter, digital-to-analog converter, operational amplifier, multi-differential operational amplifier, phase shifters, phase calibrators

Abstract

The paper considers existing circuits of the functional digital-to-analog converters for the phase measurement systems. The disadvantage of these circuits lies in using the operation amplifiers in their structure, which have low values of their own quality indicators and do not provide differential conversion of several input voltages. Thus, it requires introduction of the external elements influencing their quality indicators. The paper presents a search for new circuit solutions in the amplifiers design ensuring differential conversion of several input voltages, as well as having lower zero offset voltage and higher common-mode rejection coefficient compared to the operation and instrumentation amplifiers. The conducted research results in proposing to use the multi differential operation amplifiers as components of the functional digital-to-analog converters of the new class of active elements, which would make it possible to eliminate the external resistors in the amplifier structure, i.e., their influence on the circuit quality indicators. Amplifiers of this class improve intrinsic parameters compared to the operation and instrumentation amplifiers. The paper demonstrates a possibility to design high-speed digital-to-analog converters based on them using the weighted summation principle. In this case, a resistive matrix with the resistance values reduced range is used. This allows increasing the digital-to-analog converter capacity. The given digital-to-analog converter circuit makes it possible to implement both positive and negative values of the polynomial coefficients, as well as expand the polynomial argument range by 2 times. Thus, the proposed circuit solution in designing a functional digital-to-analog converter allows expanding the device functionality, as well as improving its quality indicators

Please cite this article in English as:

Fedorov S.V. New circuit solutions in designing functional digital-to-analog converters for the phase measurement systems. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 4 (149), pp. 92--109 (in Russ.). EDN: SJCMBA

References

[1] Sapelnikov V.M., Kravchenko S.A., Chmykh M.K., et al. Fazovrashchateli, kalibratory fazy, etalony fazovogo sdviga, fazovye izmereniya v radionavigatsii [Phase shifters, phase calibrators, phase shift standards, phase measurements in radio navigation]. Ufa, USPTU Publ., 2014.

[2] Svintsov I.V., Svintsov V.Ya. A new electrometric analysis method for environmental monitoring. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Upravlenie, vychislitelnaya tekhnika i informatika [Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics], 2012, no. 2, pp. 99--105 (in Russ.). EDN: PAJWXF

[3] Kanareykin V.I. Preobrazovateli fazovogo sdviga na osnove funktsionalnykh TsAP. Dis. kand. tekh. nauk [Phase shift converters based on functional DACs. Cand. Sc. (Eng.). Diss.]. Ufa, UGAT, 2011.

[4] Sapelnikov V.M., Kravchenko S.A., Chmykh M.K. Problemy vosproizvedeniya smeshchaemykh vo vremeni elektricheskikh signalov i ikh metrologicheskoe obespechenie [Problems of reproducing time-shifted electrical signals and their metrological support]. Ufa, BGU Publ., 2000.

[5] Sapelnikov V.M., Maksutov A.D., Klimenko S.E. Methods of constructing digitally controlled phase calibrators in instrument construction. Meas. Tech., 2012, vol. 55, no. 3, pp. 321--328. DOI: https://doi.org/10.1007/s11018-012-9958-2

[6] Sapelnikov V.M. Functional digital-to-analog converters and their role in the development of instrument. Izmerenie. Monitoring. Upravlenie. Kontrol [Measuring. Monitoring. Management. Control], 2014, no. 1, pp. 4--14 (in Russ.). EDN: SGRUYJ

[7] Kanareykin V.I., Kanareykina S.G. Gibridnyy funktsionalnyy tsifroanalogovyy preobrazovatel so splaynovoy approksimatsiey n-go poryadka [Hybrid functional digital-to-analog converter with spline approximation of n-th order]. Patent RU 2628918. Appl. 03.08.2016, publ. 22.08.2017 (in Russ.).

[8] Wei Q., Qiao F., Yang H. New development of analog-to-digital converters. Re-cent Pat. Electr. Eng., 2011, vol. 4, no. 3, pp. 214--220. DOI: http://dx.doi.org/10.2174/1874476111104030214

[9] Manzhula V.G., Prokopenko N.N. Precision operational amplifier with integrated multidifferential input stage. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2013, no. 1 (in Russ.). EDN: PWAZHZ9

[10] Krutchinskiy S.G., Titov A.E., Serebryakov A.I., et al. Precision analog interfaces based on two multi-differential operational amplifier. Inzhenernyy vestnik Dona [Engineering Journal of Don], 2013, no. 3 (in Russ.). EDN: RZEGRP

[11] Krutchinsky S.G., Tsybin M.S., Titov A.E. Structural optimization of differential stage in operational amplifiers. ICSES, 2010, pp. 205--208.

[12] Prokopenko N.N., Butyrlagin N.V., Pakhomov I.V. [Main parameters and equations of basic circuits for switching on multidifferential operational amplifiers with a high-impedance node]. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES) [Problems of developing promising micro- and nanoelectronic systems (MES)], 2014, no. 3, pp. 111--116 (in Russ.).

[13] Zainul A., Koichi T., Shota M., et al. A new instrumentation amplifier architecture based on differential difference amplifier for biological signal processing. IJECE, 2017, vol. 7, no. 2, pp. 759--766. DOI: http://doi.org/10.11591/ijece.v7i2.pp759-766

[14] Pakhomov I.V. Multidifferentsialnye operatsionnye usiliteli napryazheniy i tokov s aktivnoy otritsatelnoy obratnoy svyazyu. Dis. kand. tekh. nauk [Multidifferential operational voltage and current amplifiers with active negative feedback. Cand. Sc. (Eng.). Diss.]. Rostov-na-Donu, YuRGTU, 2017 (in Russ.).

[15] Prokopenko N.N., Pakhomov I.V., Bugakova A.V., et al. The method of the errors calculation from the input common-mode signal in the analog interfaces based on the differential difference operational amplifiers and the ways of their decrease. SIBCON, 2016, pp. 638--643. DOI: https://doi.org/10.1109/SIBCON.2016.7491789

[16] Titov A.E. Design of symmetrical amplifiers with minimum input offset voltage. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFEDU. Engineering Sciences], 2014, no. 5, pp. 92--99 (in Russ.). EDN: SEDDJR

[17] Krutchinskiy S.G., Titov A.E. Multidifferential operational amplifier in instrumental amplifier mode. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie [St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and Control Systems], 2010, no. 3, pp. 200--203 (in Russ.). EDN: MTAOTP

[18] Krutchinskiy S.G., Titov A.E. [Optimization of instrumentation amplifiers structures with indirect current feedback instrumentation amplifiers]. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES) [Problems of developing promising micro- and nanoelectronic systems (MES)], 2014, no. 3, pp. 9--14 (in Russ.). EDN: SQSIMH

[19] Zhu L., Zhou Z., Wang W., et al. A high CMRR Differential difference amplifier employing combined input pairs for neural signal recordings. IEEE Trans. Biomed. Circuits Syst., 2024, vol. 18, no. 1, pp. 100--110. DOI: https://doi.org/10.1109/TBCAS.2023.3311465

[20] Mejia-Chavez P., Sanchez-Garcia P.J., Velazquez-Lopez J. Differential difference amplifier FGMOS for electrocardiogram signal acquisition. 8th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control, 2011. DOI: https://doi.org/10.1109/ICEEE.2011.6106684