|

Measuring Detonation Velocity of the Power-Consuming Substances using the Authors’ Ionization Sensors: Experimental and Numerical Simulation

Authors: Ganigin S.Yu., Kiyashchenko V.V., Akopyan A.A., Shmyrin G.V., Tenyakov M.V., Verevkin D.V., Grechukhina M.S. Published: 29.09.2024
Published in issue: #3(148)/2024  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Information-Measuring and Control Systems  
Keywords: ionization sensors, detonation velocity, digital models, mathematical analysis, properties prediction, power-consuming substances

Abstract

The paper considers application of the ionization sensors to measure detonation velocity of the power-consuming substances and to create digital models based on the obtained data. It presents operation prin-ciples and experimental setup for such measurements. Results of the detonation velocity measurement in various substances are obtained confirming accuracy and significance of this research method. The paper describes principle of creating digital models based on detonation velocity data and substance composition using mathematical analysis and statistics. The obtained detonation velocity data are used to create a digital model of the power-consuming substance to optimize its properties. It provides conclusions and prospects for further research including design and development of more accurate and sensitive sensors, expansion of the set of measurement parameters, and deepening interaction between the substance components at the molecular level. Research results could be applied in various areas, i.e., industry, defense, science and technology, to predict and control the power-consuming substances properties, as well as to ensure their safety and efficiency. Prospects in further research are related to expanding capabilities of the ionization sensors in measuring the power-consuming substance detonation velocity

The work was financially supported by Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment (project no. AAAA-A12-2110800012-0)

Please cite this article in English as:

Ganigin S.Yu., Kiyashchenko V.V., Akopyan A.A., et al. Measuring detonation velocity of the power-consuming substances using the authors' ionization sensors: experimental and numerical simulation. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 3 (148), pp. 22--41 (in Russ.). EDN: NMGFCS

References

[1] Kozyrev S.A., Edigarev S.A., Vlasova E.A., et al. Comprehensive method for assessing explosive and gas characteristics of industrial explosives. Zapiski Gornogo instituta [Journal of Mining Institute], 2007, vol. 171, pp. 195--202 (in Russ.). EDN: IBLIKV

[2] Galaydin P.A., Mustafaev Yu.N., Musteykis A.I. Process speed measurement in detonation tubes using ionization detectors. Priborostroenie [Journal of Instrument Engineering], 2011, no. 5, pp. 72--75 (in Russ.).

[3] Metod izmereniy skorosti detonatsii vzryvchatykh veshchestv reflektrometricheskim metodom s primeneniem izmeritelya skorosti detonatsii Speed VOD STO 01.01.004-2011 (kompaniya TLC Engineering-solutions Ltd) [Method for measuring the detonation velocity of explosives by the reflectometric method using the speed VOD detonation velocity meter STO 01.01.004-2011 (TLC Engineering-solutions Ltd company)]. Ekaterinburg, UrO RAN Publ., 2011.

[4] Smurov S.V., Salko A.E., Zagarskikh V.I., et al. The phenomenon of detonation wave overdrive as a tool for increasing the explosive characteristics of linear deto nating devices. Izvestiya Instituta inzhenernoy fiziki, 2019, no. 4, pp. 21--24 (in Russ.). EDN: ZZZZDP

[5] Kutuev V.A., Menshikov P.V., Zharikov S.N. The analysis of methods for studying explosives’ detonation processes. Problemy nedropolzovaniya [Problems of Subsoil Use], 2016, no. 3, pp. 78--87 (in Russ.). EDN: WMEGUZ

[6] Frederick M.D., Gejji R.M., Shepherd J.E., et al. Statistical analysis of detonation wave structure. Proc. Combust. Inst., 2023, vol. 39, no. 3, pp. 2847--2854. DOI: https://doi.org/10.1016/j.proci.2022.08.054

[7] Zhang G., Zhao Y., Liu Y., et al. A flexible MEMS ionization-conducted probe sensor for evaluating detonation velocity of microcharges. Sens. Actuator A Phys., 2021, vol. 331, art. 112929. DOI: https://doi.org/10.1016/j.sna.2021.112929

[8] Liu T., Cui J., Zheng Y., et al. A self-powered inert-gas sensor based on gas ionization driven by a triboelectric nanogenerator. Nano Energy, 2023, vol. 106, art. 108083. DOI: https://doi.org/10.1016/j.nanoen.2022.108083

[9] Klevtsov S.I. Fizicheskie printsipy preobrazovaniya signalov v datchikakh [Principles of signal transformation in sensors]. Taganrog, TTI YuFU Publ., 2007.

[10] Lv Z., Xie S., Li Y., et al. Building the metaverse using digital twins at all scales, states, and relations. VRIH, 2022, vol. 4, no. 6, pp. 459--470. DOI: https://doi.org/10.1016/j.vrih.2022.06.005

[11] Bulat P.V., Esakov I.I., Grachev L.P., et al. Modeling and simulation of combustion and detonation by subcritical streamer discharge. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2017, vol. 17, no. 4, pp. 569--592 (in Russ.). DOI: https://doi.org/10.17586/2226-1494-2017-17-4-569-592

[12] Langmuir I., Jones H.A. A simple method for quantitative studies of ionization phenomena in gases. Science, 1924, vol. 59, no. 1530, pp. 380--383. DOI: https://doi.org/10.1126/science.59.1530.380.c

[13] Generalov M.B. Osnovnye protsessy i apparaty tekhnologii promyshlennykh vzryvchatykh veshchestv [Fundamentals of processes and equipment for the production of industrial explosives]. Moscow, Akademkniga Publ., 2004.

[14] Vorobyeva O.V., Kosterenko V.N., Timchenko A.N. Analysis of the causes of the explosions with the aim of increasing the effectiveness of the system of occupational safety management of coal enterprises. Gornyy informatsionno-analiticheskiy byulleten [Mining Informational and Analytical Bulletin], 2018, no. S61, pp. 3--17 (in Russ.). DOI: https://doi.org/10.25018/0236-1493-2018-12-61-3-17

[15] Subbotin A.I., Gavrilov N.I., Kolesnikova S.V. Dokumenty po bezopasnosti, nadzornoy i razreshitelnoy deyatelnosti v oblasti vzryvnykh rabot i izgotovleniya vzryvchatykh materialov [Documents on safety, supervisory and permitting activities in the field of explosive works and the manufacture of explosive materials]. Moscow, ZAO NTTs PB Publ., 2009.

[16] Lebedev A.A., Klimovskiy A.V. [Safety assessment of explosive works (on the example of the impact of quarry blasts on the buildings of a bakery)]. Sovremennye metody obrabotki i interpretatsii seysmologicheskikh dannykh. Mater. 10 Mezhdunar. Seysmologicheskoy shkoly [Modern Methods of Processing and Interpretation of Seismological Data. Proc. 10th Int. Seismological School]. Obninsk, FITs EGS RAN Publ., 2015, pp. 204--206 (in Russ.). EDN: UIOPS

[17] Yang Z., Rong J., Zhao Z. Study on the prediction and inverse prediction of detonation properties based on deep learning. Def. Technol., 2023, vol. 24, pp. 18--30. DOI: https://doi.org/10.1016/j.dt.2022.11.011

[18] Liu M.B., Liu G.R., Zong Z., et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput. Fluids, 2003, vol. 32, no. 3, pp. 305--322. DOI: https://doi.org/10.1016/S0045-7930(01)00105-0

[19] Yellup J.M. The computer simulation of an explosive test rig to determine the spall strength of metals. Int. J. Impact. Eng., 1984, vol. 2, no. 2, pp. 151--167. DOI: https://doi.org/10.1016/0734-743X(84)90003-4

[20] Yin J.P., Han Y.Y., Wang X.F., et al. A new charge structure based on computer modeling and simulation analysis. J. Vis. Commun. Image Represent., 2019, vol. 64, art. 102613. DOI: https://doi.org/10.1016/J.JVCIR.2019.102613