Options in Constructing an Antenna-Feeder System for the Radio Interferometric Measurements in the Sub-mm Range
Authors: Gaynulina E.Yu., Ikonnikov V.N., Kornev N.S., Nazarov A.V. | Published: 19.06.2024 |
Published in issue: #2(147)/2024 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instrumentation and Methods to Control Environment, Substances, Materials, and Products | |
Keywords: submillimeter range, supersized metal waveguide, dielectric wave guide, quasi-optical antenna, EHF interferometer |
Abstract
Microwave radio interferometers are widely used to solve the short-range radar problems in studying the fast gas-dynamic processes; they make it possible to analyze the motion dynamics and reconstruct the deformation picture of the moving surface front. Taking into account specifics of the gas-dynamic explosive processes, radio interferometers should be placed at distances of several meters from the diagnostics object, and its feed line emitters should be positioned in close proximity to the object. To minimize losses in the submillimeter range feeder line at distances of 1--1.5 mm from the radio interferometer to the object, the paper proposes two options for testing the radiation channeling systems. The first option is based on the unique property of the supersized metal waveguides, i.e., sharp decrease in linear losses with the increasing ratio of the waveguide transverse size to the wavelength. A feeder line is proposed that contains extended sections of the supersized metal waveguides and short flexible sections of the dielectric waveguide. The second option of the radio interferometer antenna-feeder system is based on formation of the focused wave beam in free space by a two-mirror long-focus antenna with the split focus. Design option for the antenna-feeder system with beam focusing at the distance of 1 m from the antenna opening is considered. Based on the numerical simulation results, the optimal horn feed was selected providing the required radiation pattern and the ratio between the two mirrors foci and the feed. Introduction of the proposed quasi-optical antenna-feeder system as part of the radio interferometer makes it possible to obtain minimum possible losses in the measuring path and expand diagnostics capabilities in the submillimeter range
Please cite this article in English as:
Gaynulina E.Yu., Ikonnikov V.N., Kornev N.S., et al. Options in constructing an antenna-feeder system for the radio interferometric measurements in the sub-mm range. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 2 (147), pp. 37--54 (in Russ.). EDN: HHUNKE
References
[1] Mikhaylov A.L., Kostyukov V.E., Orekhov Yu.I., et al. [Some results of application of millimetre wavelength range radio interferometers for study of gas dynamic processes at the Institute of Physics and Technology of RFNC --- VNIIEF]. Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. Tr. Mezhdunar. konf. "XV Kharitonovskie tematicheskie nauchnye chteniya" [Extreme States of Substance. Detonation. Shock Waves. Proc. Int. Conf. XV Kharitonov Thematic Scientific Readings]. Sarov, RFNC --- VNIIEF Publ., 2013, pp. 649--654 (in Russ.).
[2] Kanakov V.A., Katin S.V., Kornev N.S., et al. State and prospects of development of microwave radio interferometry for gas-dynamic processes diagnostics. Antenny [Antennas], 2016, no. 1, pp. 49--54 (in Russ.).
[3] Mikhaylov A.L., ed. Nevozmushchayushchie metody diagnostiki bystroprotekayushchikh protsessov [Non-perturbing methods of diagnostics of fast processes]. Sarov, RFNC --- VNIIEF Publ., 2015.
[4] Ilkaev R.I., Mikhaylov A.L., Zhernokletov M.V., eds. Eksperimentalnye metody i sredstva v fizike ekstremalnykh sostoyaniy veshchestva [Experimental methods and tools in physics of extreme states of matter]. Moscow, RAS, 2021.
[5] Mays R.O., Tringe J.W., Souers P.C., et al. Experimental and computational investigation of microwave interferometry for detonation front сharacterization. AIP Conf. Proc., 2018, vol. 1979, art. 160016. DOI: https://doi.org/10.1063/1.5045015
[6] Zhai Z.-H., Sun C.-L., Liu Q., et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics. Appl. Phys. Lett., 2020, vol. 116, no. 16, art. 161102.DOI: https://doi.org/10.1063/1.5142415
[7] McCall G.H., Bongianni W.L., Miranda G.A. Microwave interferometer for shock wave, detonation and material motion measurements. Rev. Sc. Instrum., 1985, vol. 56, no. 8, pp. 1612--1618. DOI: https://doi.org/10.1063/1.1138110
[8] Vzyatyshev V.F. Dielektricheskie volnovody [Dielectric waveguides]. Moscow, Sovetskoe radio Publ., 1970.
[9] Kokh B. Radioelektronnye metody issledovaniya bystroprotekayushchikh protsessov [Radio-electronic methods of investigation of fast processes]. V: Fizika bystroproteka-yushchikh protsessov. T. 1 [In: Physics of fast processes. Vol. 1]. Moscow, Mir Publ., 1971, pp. 382--462 (in Russ.).
[10] Pankratov A.G., Churkin S.S. [Probing devices of microwave RI on dielectric waveguides for investigation of objects at considerable distances]. Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. Tr. Mezhdunar. konf. "XV Kharitonovskie tematicheskie nauchnye chteniya". [Extreme States of Substance. Detonation. Shock Waves. Proc. Int. Conf. XV Kharitonov Thematic Scientific Readings]. Sarov, RFNC --- VNIIEF Publ., 2013, pp. 360--361 (in Russ.).
[11] Gaynulina E.Yu., Mineev K.V., Orekhov Yu.I., et al. [Ultra-low-loss waveguide path for microwave diagnostics of objects at long distances]. Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. Tr. Mezhdunar. konf. "XIX Kharitonovskie tematicheskie nauchnye chteniya". T. 2 [Extreme States of Substance. Detonation. Shock Waves. Proc. Int. Conf. XIX Kharitonov Thematic Scientific Readings. Vol. 2]. Sarov, RFNC --- VNIIEF Publ., 2018, pp. 342--347 (in Russ.).
[12] Parshin V.V., Serov E.A., Nikolenko A.S., et al. [Modern polymers for mm and submmw]. Mater. 28-y Mezhdunar. Krymskoy konf. "SVCh-tekhnika i telekommunikatsionnye tekhnologii" [Proc. 28nd Int. Crimean Conf. Microwave Equipment and Telecommunication Technologies]. Sevastopol, SevSU Publ., 2018, pp. 831--837 (in Russ.).
[13] Valitov R.A., ed. Tekhnika submillimetrovykh voln [Submillimetre wave technique]. Moscow, Sovetskoe radio Publ., 1969.
[14] Ayvazyan M.Ts. Guiding systems for the terahertz range. Vestnik NPUA. Informatsionnye tekhnologii, elektronika, radiotekhnika [Proceedings. Information Technologies, Electronics, Radio Engineering], 2019, no. 2, pp. 9--27 (in Russ.).
[15] Kostenko A.A. Quasi-optics: historical background and current development trends. Radiofizika i radioastronomiya, 2000, vol. 5, no. 3, pp. 221--246 (in Russ.).
[16] Gaynulina E.Yu., Kornev N.S., Mineev K.V., et al. Gibkiy volnovod dlya svyazi metallicheskikh volnovodov standartnogo i sverkhrazmernogo secheniy [Flexible waveguide for coupling metal waveguides of standard and super-dimensional cross sections]. Patent RU 2657318. Appl. 06.03.2017, publ. 13.06.2018 (in Russ.).
[17] Vzyatyshev V.F., Orekhov Yu.I., Pankratov A.G., et al. Volnovodnyy perekhod ot metallicheskogo volnovoda k dielektricheskomu [Waveguide adapter from metal waveguide to dielectric waveguide]. Patent RU 2557472. Appl. 21.01.2014, publ. 20.07.2015 (in Russ.).
[18] Kurushin A.A. Shkola proektirovaniya SVCh ustroystv v CST Studio Suite [Microwave device design school in CST Studio Suite]. Moscow, Sam Poligrafist Publ., 2014.
[19] Gaynulina E.Yu., Kornev N.S., Nazarov A.V. [Investigation on the possibility of developing compact antenna-feeder system for uhf radiointerferometer]. Mater. dokl. Mezhdunar. nauch.-tekh. konf. "Informatsionnye sistemy i tekhnologii" [Proc. Int. Sc.-Tech. Conf. Information Systems and Technologies]. Nizhniy Novgorod, NSTU Publ., 2017, pp. 1062--1067 (in Russ.).
[20] Gaynulina E.Yu., Kornev N.S., Nazarov A.V., et al. [Dielectric radiators for compact antenna-feeder system for uhf diagnostics in closed volumes]. Tez. dokl. Mezhdunar. nauch.-tekh. konf. "Informatsionnye sistemy i tekhnologii" [Proc. Int. Sc.-Tech. Conf. Information Systems and Technologies]. Nizhniy Novgorod, NSTU, 2018, pp. 33--39 (in Russ.).
[21] Ayzenberg G.Z., Yampolskiy V.G., Tereshin O.N. Antenny UKV. Ch. 2. [Antennas VHF], Moscow, Svyaz Publ., 1977.
[22] Kanakov V.A., Orekhov Yu.I., Pelyushenko S.A., et al. Antennas for EHF-band radiovision systems. Antenny [Antennas], 2006, no. 5, pp. 13--16 (in Russ.).