Algorithms for Processing the Response Data of Sensitive Elements of Gas Sensors in Chemically Aggressive Environments

Authors: Novikov S.P., Plugotarenko N.K. Published: 22.12.2020
Published in issue: #4(133)/2020  
DOI: 10.18698/0236-3933-2020-4-153-164

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instrumentation and Methods to Control Environment, Substances, Materials, and Products  
Keywords: gas analyzer, sensor, data processing, reliability, calibration, concentration, instrument error

Currently, much attention is paid to environmental monitoring. This is in many cases characterized by the use of highly efficient solid state gas analyzers based on semiconductors. At the same time, it is necessary not only to use high-quality components, but also to process data quickly, meeting the requirements for accuracy and quality. Such processing makes it possible to diagnose the current performance of sensors, more accurately and faster determine the concentration of the target gas, and control the characteristics. The study introduces a method for processing the response data of the sensitive elements of gas sensors in chemically aggressive media, including the construction of calibration dependencies which increase the accuracy of determining gas concentrations

This work was carried out with the financial support of the Southern Federal University, project no. VnGr-07/2017-21


[1] Petrov V.V., Nazarova T.N., Kopylova N.F., et al. Research of formation process and propertiesof nano-sized SiO2SnOXCuOY, material for gas sensor application. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, vol. 117, no. 4, pp. 123--128 (in Russ.).

[2] Sauter D., Weimar U., Noetzel G., et al. Development of modular ozone sensor system for application in practical use. Sens. Actuators B, 2000, vol. 69, pp. 1--9.

[3] Obvintseva L.A., Gubanova D.P. Rapid detection of chlorine and chlorine dioxide in air using semiconductor sensors. J. Anal. Chem., 2004, vol. 59, no. 8, pp. 785--787. DOI: https://doi.org/10.1023/B:JANC.0000037287.04531.3a

[4] Sorocki J., Rydosz A. A prototype of a portable gas analyzer for exhaled acetone detection. Appl. Sc., 2019, vol. 9, no. 13, art. 2605. DOI: https://doi.org/10.3390/app9132605

[5] Isaienko O., Maksymovych N., Yatsimirsky V. Determination of the sensitive layer temperature of the adsorption-semiconductor gas sensor. Sens. Actuators B, 2005, vol. 108, no. 1-2, pp. 134--142. DOI: https://doi.org/10.1016/j.snb.2004.12.081

[6] Utembe S.R., Hansford G.M., Sanderson M.G., et al. An ozone monitoring instrument based on the tungsten trioxide (WO3) semiconductor. Sens. Actuators B, 2006, vol. 114, pp. 507--512.

[7] Novikov S.P., Svirepova M.C. Analysis of data of research tests of alloyed silicon-carbon coatings in chemical aggressive media. Vestnik molodezhnoy nauki Rossii, 2019, no. 2 (in Russ.). Available at: https://www.elibrary.ru/download/elibrary_42896762_88049294.pdf

[8] Novikov S.P., Svirepova M.C., Plugotarenko N.K. [Analysis of the results of response to sensitive elements of gas sensors in chemical aggressive environment]. MMTT-32. Sb. tr. mezhdunar. nauch. konf. [MMTT-32. Proc. Int. Sc. Conf.], 2019, vol. 3, pp. 90--93 (in Russ.).

[9] Al’-Khadrami I.S., Korolev A.N., Semenistaya T.V., et al. Research of gas sensitive properties of Cu-containing Ir-pyrolyzed polyacrylonitril. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of Universities. Electronics], 2008, no. 1, pp. 20--25 (in Russ.).

[10] Safonova O.V., Rumyantseva M.N., Ryabova L.I., et al. Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide. Mater. Sc. Eng. B, 2001, vol. 85, no. 1, pp. 43--49. DOI: https://doi.org/10.1016/S0921-5107(01)00640-7

[11] Rumyantseva M.N., Makeeva E.A., Gas’kov A.M. Effect of semiconductor sensor materials microstructure on oxygen chemisorbtion on their surfaces. Rossiyskiy khimicheskiy zhurnal, 2008, vol. 52, no. 2, pp. 122--129 (in Russ.).

[12] Dhanasekaran V., Mahalingam T., Chandramohan R., et al. Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films, 2012, vol. 520, no. 21, pp. 6608--6613. DOI: https://doi.org/10.1016/j.tsf.2012.07.021

[13] Casella I.G., Gatta M.J. Anodic electrodeposition of copper oxide/hydroxide films by alkaline solutions containing cuprous cyanide ions. Electroanal. Chem., 2000, vol. 494, no. 1, pp. 12--20. DOI: 10.1016/S0022-0728(00)00375-2

[14] Petrov V.V., Korolev A.N. Nanorazmernye oksidnye materialy dlya sensorov gazov [Nanosize oxide materials for gas sensors]. Taganrog, TTI YuFU Publ., 2008.

[15] Kazakov S.A., Kaminskiy V.V., Solov’yev S.M., et al. Semiconductor gas oxygen sensors based on polycrystalline films of samarium sulfide. Nauchnoe priborostroenie, 2015, vol. 25, no. 3, pp. 116--123 (in Russ.).

[16] Nazarova T.N., Sergienko D.V., Petrov V.V., et al. Study of physical and chemical, electrophysical properties and gas sensitive characteristics of SiO2ZrOx nanocomposite films. Nano- i mikrosistemnaya tekhnika [Nano- and Microsystems Technology], 2012, no. 2, pp. 38--41 (in Russ.).

[17] Petrov V.V., Nazarova T.N., Korolev A.N., et al. Thin sol-gel SiO2--SnOx--AgOy films for low temperature ammonia gas sensor. Sens. Actuators B, 2008, vol. 133, no. 1, pp. 291--295. DOI: https://doi.org/10.1016/j.snb.2008.02.026

[18] Petrov V.V., Nazarova T.N., Korolev A.N., et al. Formation of thin gas-sensitive oxide films with complex composition alloyed with Ag. Fizika i khimiya obrabotki materialov [Physics and Chemistry of Materials Treatment], 2005, no. 3, pp. 58--62 (in Russ.).

[19] Nikolaev A.V., El’-Salim S.Z. An algorithm for kinetic data processing during the analysis of gas mixtures . Nadezhnost’ i kachestvo slozhnykh system [Reliability & Quality of Complex Systems], 2017, no. 4, pp. 19--26 (in Russ.).DOI: https://doi.org/10.21685/2307-4205-2017-4-3