|

Using Microthermostatting to Increase Thermal Stability of On-Board Electronics

Authors: Ozerkin D.V., Bondarenko V.O. Published: 10.09.2020
Published in issue: #3(132)/2020  
DOI: 10.18698/0236-3933-2020-3-18-36

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instrumentation and Methods to Control Environment, Substances, Materials, and Products  
Keywords: on-board electronics, electric and radio equipment, temperature control, microthermostatting, temperature error equation, thermal stability

The paper considers a promising temperature control method for electronic equipment, that is, microthermostatting, which is characterised by maintaining a stable temperature in specific electric and radio devices. We show that the temperature error equation may be the most universal mathematical model for developing microthermostatted electronics. Statistical analysis methods concerning operation modes of an electronic circuit used in a device make it possible to obtain a regression model that forms the basis for deriving the temperature error equation. We propose to replace a physical factorial experiment with a numerical factorial experiment in order to reduce the time spent performing the statistical analysis. We note that it may be possible to implement this numerical factorial experiment using well-known circuit simulation software packages. The general form of the temperature error equation enables us to conclude that in the process of investigating the thermal stability of an electronic device there arise three subproblems: 1) the problem of synthesising fitting mathematical models for the electric and radio equipment; 2) the circuit modelling problem regarding the circuit used; 3) the topology design problem for computing the temperature field. In the experimental part of our investigation, we propose a simple design for a heater microthermostat in a voltage regulator. A feature of the microthermostat design is a microcontroller to form corrective actions affecting the actuators. In our studies we compared two voltage regulator designs: 1) without thermostatting; 2) using microthermostatting. We show that the thermostatted option displays thermal stability that is 2.68 times higher than that of the basic option

References

[1] Dulnev G.N., Parfenov V.G., Sigalov A.V. Metody rascheta teplovogo rezhima priborov [Calculation methods for thermal equipment of devices]. Moscow, Radio i svyaz Publ., 1990.

[2] Alekseev V.P. 3D modeling of substrate temperature control in a hybrid-film microthermostat. Novye issledovaniya v razrabotke tekhniki i tekhnologiy, 2018, no. 1, pp. 12--30 (in Russ.).

[3] Babanin V. Thermostating of microcontroller devices elements. Radiolotsman, 2016, no. 8 (63) (in Russ.). Available at: https://www.rlocman.ru/shem/schematics.html?di=277869

[4] Kozlov V.G., Alekseev V.P., Ozerkin D.V. Mikrotermostat s pozistornym nagrevatelem [Microthermostat with a posistor heater]. Patent RU 2164709. Appl. 29.04.1999, publ. 27.03.2001 (in Russ.).

[5] Kozlov V.G., Ozerkin D.V., Kozlova V.G. Ustroystvo dlya stabilizatsii temperatury mikrosborok [Device for stabilizing temperature of micro-assemblies]. Patent RU 2459231. Appl. 30.09.2010, publ. 20.08.2012 (in Russ.).

[6] Kozlov V.G., Alekseev V.P., Ozerkin D.V., et al. Ustroystvo dlya stabilizatsii temperatury elementov mikroskhem i mikrosborok [Device for stabilizing temperature of microcircuits and microassemblies elements]. Patent Ru 2461047. Appl. 05.07.2011, publ. 10.09.2012 (in Russ.).

[7] Kozlov V.G., Ozerkin D.V., Kozlova V.G. Ustroystvo dlya stabilizatsii temperatury elementov mikrosborok [Device for stabilizing temperature of microassembly elements]. Patent RU 2439746. Appl. 01.06.2010, publ. 10.01.2012 (in Russ.).

[8] Gadzhiev N.D., Garibov M.A., Guseynov N.L., et al. Mikrotermostat dlya integral’nykh skhem [Microthermostat for integrated circuits]. Patent SU 514278. Appl. 05.05.1974, publ. 15.05.1976 (in Russ.).

[9] Tsyganko P.Ya., Orlov O.M., Golikov A.N., et al. Mikrotermostat [Microthermostat]. Patent SU 515095. Appl. 10.09.1974, publ. 25.05.1976 (in Russ.).

[10] Begota R.V., Sidorov M.N., Tarasov V.P. Mikrotermostat [Microthermostat]. Patent SU 826297. Appl. 09.08.1979, publ. 30.04.1981 (in Russ.).

[11] Panin N.V., Panin V.V. Gibridno-plenochnyy mikrotermostat [Hybrid-film micro-thermostat]. Patent SU 1164679. Appl. 19.05.1983, publ. 30.06.1985 (in Russ.).

[12] Shvarts V.P., Labzhinskiy S.I., Goldshteyn E.I., et al. Ustroystvo dlya termostatirovaniya [Device for thermostatting]. Patent SU 748216. Appl. 01.04.1981, publ. 28.02.1983 (in Russ.).

[13] Bordachev D.A., Shustov I.E., Podchezertsev V.P. Experimental research of temperature control system of a precision gyroscopic meter of angular velocity vector. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2017, no. 1 (112), pp. 24--34 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2017-1-24-34

[14] Shin D.D., Lee D.G., Mohanchandra K.P., et al. Thin film NiTi microthermostat array. Sens. Actuator. A Phys., 2006, vol. 130-131, pp. 37--41. DOI: https://doi.org/10.1016/j.sna.2005.10.010

[15] Wijngaards D.D.L., de Graaf G., Wolffenbuttel R.F. Single-chip micro-thermostat applying both active heating and active cooling. Sens. Actuator. A Phys., 2004, vol. 110, iss. 1-3, pp. 187--195. DOI: https://doi.org/10.1016/j.sna.2003.10.084

[16] Simonyan R.A., Sanoyan A.A., Gulyan A.G. High-accuracy micro-thermostat. Izvestiya NAN RA. Tekhnicheskie nauki [Proceedings of the NAS RA: Technical Science], 2010, vol. 63, no. 3, pp. 302--305 (in Russ.).

[17] Fomin A.V., Borisov V.F., Chermoshenskiy V.V. Dopuski v radioelektronnoy apparature [Tolerances of radioelectronic equipment]. Moscow, Sovetskoe radio Publ., 1973.

[18] Fomin A.V., Borisov V.F., Chermoshenskiy V.V. Dopuski v radioelektronnoy apparature [Tolerances of radioelectronic equipment]. Moscow, Sovetskoe radio Publ., 1973.

[19] Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planirovanie eksperimenta pri poiske optimal’nykh usloviy [Planning of experiment at research for optimal conditions]. Moscow, Nauka Publ., 1976.

[20] Gludkin O.P., Chernyaev V.N. Analiz i kontrol’ tekhnologicheskikh protsessov proizvodstva REA [Analysis and monitoring of technological processes for manufacturing radioelectronic devices]. Moscow, Radio i svyaz Publ., 1983.

[21] Sypchuk P.P., Talalay A.M. Metody statisticheskogo analiza pri upravlenii kachestvom izgotovleniya elementov REA [Statistical analysis methods at quality management of manufacturing elements for radioelectronic devices]. Moscow, Sovetskoe radio Publ., 1979.

[22] Ozerkin D.V., Rusanovskiy S.A. Regression analysis in the research of the temperature stability of electronic circuits. Dinamika slozhnykh sistem --- XXI vek [Dynamics of Complex Systems --- XXI century], 2017, vol. 11, no. 1, pp. 65--72 (in Russ.)

[23] Mobil’naya temperaturnaya sistema dlya ispytaniy elektronnykh komponentov i pechatnykh plat, "ThermoStream" TP04300A. equipnet.ru: website (in Russ.). Available at: https://www.equipnet.ru/equip/equip_41737.html (accessed: 05.12.2019).

[24] Keown J. OrCAD PSpice and circuit analysis. Prentice Hall, 2000.

[25] Amelina M.A., Amelin S.A. Programma skhemotekhnicheskogo modelirovaniya MicroCAP 8 [The program of circuit simulation MicroCAP 8]. Moscow, Goryachaya liniya--Telekom Publ., 2007.