Experimental Research into Laser Method for Detecting Plant Stress

Authors: Fedotov Yu.V., Bullo O.A., Belov M.L., Gorodnichev V.A. Published: 12.04.2017
Published in issue: #2(113)/2017  
DOI: 10.18698/0236-3933-2017-2-21-32

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instrumentation and Methods to Control Environment, Substances, Materials, and Products  
Keywords: laser method, laser-induced fluorescence, plant state control

The purpose of the work was to develop a laser fluorescence method for detecting plant stress. For the fluorescence excitation wave of 532 nm. length, we give the results of experimental studies of the spectra of laser-induced plant fluorescence in normal and various stress conditions caused by the presence of various pollutants in the soil (salt, iron and copper sulfate), insufficient or excessive watering, mechanical damage to the leaves and the plant root system. We carried out a comparative analysis of options for selecting the spectral ranges of registering laser-induced fluorescence plant emission. Findings of the research show that for the plant state monitoring tasks, spectral bands with central wavelengths of 685 and 740 nm are the most efficient (in terms of reliability of correct detection of stress state) bands of fluorescence radiation detection.


[1] Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence. Applied Spectroscopy, 2011, vol. 65, no. 1, pp. 10-19. DOI: 10.1366/10-06100 Available at: http://journals.sagepub.com/doi/abs/10.1366/10-06100

[2] Gouveia-Neto A.S., Silva Jr. E.A., Oliveira R.A., Cunha P.C., Costa E.B., Camara T.J.R., Willadino L.G. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel. Proc. of SPIE. 2011, vol. 7902, pp. 79020A-1-79020A-10. DOI: 10.1117/12.872991 Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=718967

[3] Afonasenko A.V., Iglakova A.I., Matvienko G.G., Oshlakov V.K., Prokop’yev V.E. Laboratory and lidar measurements of birch leaves spectral characteristics in different periods of vegetation. Optika atmosfery i okeana, 2012, vol. 25, no. 3, pp. 237-243 (in Russ.).

[4] Fedotov Yu.V., Bullo O.A., Belov M.L., Gorodnichev V.A. Stability of results of plant state detection by laser fluorescence method. Optika atmosfery i okeana, 2016, vol. 29, no. 1, pp. 80-84 (in Russ.).

[5] Panneton B., Guillaume S., Roger J.M., Samson G. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra. Applied Spectroscopy, 2010, vol. 64, no. 1, pp. 30-36. DOI: 10.1366/000370210790572106 Available at: http://journals.sagepub.com/doi/abs/10.1366/000370210790572106

[6] Zhi-qiang C., Wen-li C. Effects of NaCl on photosynthesis in Arabidopsis and Thellungiel-la leaves based on the fluorescence spectra, the fast chlorophyll fluorescence induction dynamics analysis and the delayed fluorescence technique. Proc. of SPIE. 2010, vol. 7568, pp. 756822-1-756822-8. DOI: 10.1117/12.841257 Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?Articleid=780701

[7] Gouveia-Neto A.S., Silva Jr. E.A., Costa Jr. E.B., Silva L.M.H., Camara T.J.R., Willadino L.G. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species. Proc. of SPIE. 2010, vol. 7568, pp. 75680G-1-75680G-8. DOI: 10.1117/12.839462 Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=780574

[8] Grishaev M.V., Sal’nikova N.S. A Setup for remote recording of the spectrum of laser-induced fluorescence from crowns of woody plants. Instruments and Experimental Teеhniques, 2010, vol. 53, no. 5, pp. 746-749. DOI: 10.1134/S0020441210050246 Available at: http://link.springer.com/article/10.1134/S0020441210050246

[9] Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength / J. Yanga, W. Gonga, S. Shia, L. Dua, J. Suna, S. Songe. Spectroscopy Letters, 2016, vol. 49, no. 4, pp. 263-267. DOI: 10.1080/00387010.2016.1138311 Available at: http://www.tandfonline.com/doi/abs/10.1080/00387010.2016.1138311

[10] Hedimbi M., Singh S., Kent A. Laser induced fluorescence study on the growth of maize plants. Natural Science, 2012, vol. 4, no. 6, pp. 395-401. DOI: 10.4236/ns.2012.46054 Available at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19977

[11] Saito K. Plant and vegetation monitoring using laser-induced fluorescence spectroscopy. In: Industrial Applications of Laser Remote Sensing. 2012, pp. 99-114.

[12] Pandey J.K., Gopal R. Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. plants. Spectroscopy, 2011, vol. 26, no. 2, pp. 129-139. DOI: 10.3233/SPE-2011-0530 Available at: https://www.hindawi.com/journals/jspec/2011/640232/abs

[13] Gopal R., Pandey J.K. Laser-induced chlorophyll fluorescence spectra of Cajanus cajan L. plant growing under cadmium stress. Proc. Int. Symposium on Molecular Spectroscopy. June 21-25, 2010, Ohio State University, Columbus, OH., USA.

[14] Pandey J.K., Gopal R. Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. Journal of Fluorescence, 2011, vol. 21, no. 2, pp. 785-791. DOI: 10.1007/s10895-010-0771-5 Available at: http://link.springer.com/article/10.1007%2Fs10895-010-0771-5

[15] Lysenkov V.S., Varduni T.V., Soyer V.G., Krasnov V.P. Plant chlorophyll fluorescence as an environmental stress characteristic: a theoretical basis of the method application. Funda-mental’nye issledovaniya [Fundamental research], 2013, no. 4-1, pp. 112-119 (in Russ.). Available at: http://fundamental-research.ru/en/article/view?id=31109

[16] Yakovets O.G. Fitofiziologiya stressa [Stress phytophysiology]. Minsk, BSU Publ., 2010. 103 p.