|

Electrical Erosion of the Contact Coatings Based on the High-Melting Point Metal Alloys

Authors: Gololobov G.P., Kruglov S.A., Suvorov D.V., Slivkin E.V., Gudzev V.V. Published: 22.03.2024
Published in issue: #1(146)/2024  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Electronic Component Base of Micro- and Nanoelectronics, Quantum Devices  
Keywords: contact coating, high-melting point metal alloys, electrodeposition, surface micro-relief, contact resistance, switching tests, electrical erosion

Abstract

The paper presents results of studying contact groups of the experimental electromagnetic relay with coatings based on the alloys with tungsten and molybdenum, which were obtained by electrochemical deposition. Alteration patterns in the contact electrical resistance were established and analyzed depending on the switching cycles’ number in the resistance load switching mode with 1 A current, 12 V voltage and 10 Hz frequency. The paper shows that introducing contact coatings based on the Ni--W, Co--W and Ni--Mo alloys makes it possible to stabilize spread in the contact electrical resistance values over the test interval main section. It was experimentally established that application of contact coating based on the tungsten alloys significantly increased switching life of the silver contact group from 2.3 • 106 to 4.5 • 106 switchings, while average value of the contact electrical resistance in steady state increased from 0.08 to 0.15 Ohm. A study was conducted to find the micro-relief alterations in the contact groups’ surface state with and without coating during the switching tests. Main mechanisms determining the electrical erosion processes intensity and switching life of the contact groups with types of the contact materials under study were considered

This work was carried out using facilities of the Regional Center for Probe Microscopy Shared Service Center at Ryazan State Radio Engineering University named after V.F. Utkin

Please cite this article in English as:

Gololobov G.P., Kruglov S.A., Suvorov D.V., et al. Electrical erosion of the contact coatings based on the high-melting point metal alloys. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 1 (146), pp. 19--37 (in Russ.). EDN: AWMNSM

References

[1] Karabanov S.M., Mayzels R.M., Shoffa V.N. Magnitoupravlyaemye germetizirovannye kontakty (gerkony) i izdeliya na ikh osnove [Magnetically controlled sealed contacts (reed contacts) and products based on them]. Dolgoprudnyy, Intellekt Publ., 2011.

[2] Braunovich M., Myshkin N.K., Konchits V.V. Electrical contacts. CRC Press, 2013.

[3] Shishkina L., Lokshtanova O., Karabanov S. Electroplated coatings for magnetically operated contacts (reed switches). Coatings, 2012, vol. 2, iss. 1, pp. 1--7. DOI: https://doi.org/10.3390/coatings2010001

[4] Peschot A., Poulain C., Souchon F., et al. Contact degradation due to material transfer in MEM switches. Microelectron. Reliab., 2012, vol. 52, iss. 9-10, pp. 2261--2266. DOI: https://doi.org/10.1016/j.microrel.2012.06.044

[5] Yang Z., Hoffmann S., Lichtenwalner D.J., et al. Resolution of the transfer direction of field-evaporated gold atoms for nanofabrication and microelectromechanical system applications. Appl. Phys. Lett., 2011, vol. 98, iss. 4, art. 044102. DOI: https://doi.org/10.1063/1.3545846

[6] Vincent M., Rowe S.W., Poulain C., et al. Field emission and material transfer in microswitches electrical contacts. Appl. Phys. Lett., 2010, vol. 97, iss. 26, art. 263503. DOI: https://doi.org/10.1063/1.3529474

[7] Yang Z. Contact reliability in ohmic microswitches. Mater. Technol., 2011, vol. 26, iss. 4, pp. 184--190. DOI: https://doi.org/10.1179/175355511X13109965351158

[8] Karabanov S.M., Verlov N.A., Suvorov D.V., et al. Properties of contact coatings based on ruthenium nanofilms for MEMS switches. Tech. Phys. Lett., 2015, vol. 41, pp. 691--693. DOI: https://doi.org/10.1134/S1063785015070226

[9] Shishkina L.V., Lokshtanova O.G. Electrolytic coatings used in the reed switches. Izvestiya SPbGTI (TU) [Bulletin of St PbSIT(TU)], 2011, no. 11, pp. 124--127 (in Russ.).

[10] Shishkina L.V., Karabanov S.M., Lokshtanova O.G. Experience of development and application of the electroplated coatings used in the industrial production of magnetically operated contacts (reed switches). Galvanotekhnika i obrabotka poverkhnosti [Electroplating and Surface Treatment], 2011, vol. 19, no. 2, pp. 20--26 (in Russ.).

[11] Bodaghi A., Hosseini J. Corrosion behavior of electrodeposited cobalt-tungsten alloy coatings in NaCl aqueous solution. Int. J. Electrochem. Sci., 2012, vol. 7, iss. 3, pp. 2584--2595. DOI: https://doi.org/10.1016/S1452-3981(23)13904-6

[12] Ma L., Xi X., Nie Z., et al. Electrodeposition and characterization of Co--W alloy from regenerated tungsten salt. Int. J. Electrochem. Sci., 2017, vol. 12, iss. 2, pp. 1034--1051. DOI: https://doi.org/10.20964/2017.02.37

[13] Allahyarzadeh M.H., Aliofkhazraei M., Rezvanian A.R., et al. Ni--W electrodeposited coatings: characterization, properties and applications. Surf. Coat. Technol., 2016, vol. 307, part A, pp. 978--1010. DOI: https://doi.org/10.1016/j.surfcoat.2016.09.052

[14] Lee H.B. Synergy between corrosion and wear of electrodeposited Ni--W coating. Tribol. Lett., 2013, vol. 50, no. 3, pp. 407--419. DOI: https://doi.org/10.1007/s11249-013-0134-x

[15] Udompanit N., Wangyao P., Henpraserttae S., et al. Wear response of composition-modulated multilayer Ni--W coatings. Adv. Mat. Res., 2014, vol. 1025-1026, pp. 302--309. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.302

[16] Tsyntsarua N., Cesiulis H., Pellicer E., et al. Structural, magnetic, and mechanical properties of electrodeposited cobalt-tungsten alloys: intrinsic and extrinsic interdependencies. Electrochim. Acta, 2013, vol. 104, pp. 94--103. DOI: https://doi.org/10.1016/j.electacta.2013.04.022

[17] Eliaz N., Sridhar T.M., Gileadi E. Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim. Acta, 2005, vol. 50, iss. 14, pp. 2893--2904. DOI: https://doi.org/10.1016/j.electacta.2004.11.038

[18] Gomez E., Pellicer E., Alcobe X., et al. Properties of Co--Mo coatings obtained by electrodeposition at pH 6.6. J. Solid State Electrochem., 2004, vol. 8, no. 7, pp. 497--504. DOI: https://doi.org/10.1007/s10008-004-0495-z

[19] Gololobov, G.P., Suvorov, D.V., Serpova, M.A., et al. Study on the surface morphology and corrosion rates of electroplated coatings based on binary alloys of refractory metals after accelerated acid tests. Trans. Inst. Met. Finish., 2021, vol. 99, iss. 2, pp. 102--108. DOI: https://doi.org/10.1080/00202967.2021.1877482

[20] Гололобов Г.П., Тарабрин Д.Ю., Сливкин Е.В. и др. Исследование электрохимически осажденных покрытий на основе сплава Ni-W. Вестник РГРТУ, 2018, № 66-2, с. 30--39. DOI: https://doi.org/10.21667/1995-4565-2018-66-4-2-30-39

[21] Gololobov G.P., Suvorov D.V., Serpova M.A., et al. The study of contact electrical resistance of coatings on the basis of refractory metal alloys Co--W, Co--Mo, Ni--W, Ni--Mo. J. Phys. Conf. Ser., 2020, vol. 889, art. 012017. DOI: https://doi.org/10.1088/1757-899X/889/1/012017

[22] Gololobov G.P., Suvorov D.V., Karabanov S.M., et al. An effect of Co--W barrier sublayer on the functional characteristics of Au--Ru contact coatings. Coatings, 2022, vol. 12, no. 2, art. 161. DOI: https://doi.org/10.3390/coatings12020161

[23] Anitov N.M., Arefyev A.S., Gololobov G.P. On occurrence of microdischarges in reed switches. Vestnik RGRTU [Vestnik of RSREU], 2009, no. 2, pp. 87--90 (in Russ.).

[24] Gololobov G.P., Arefyev A.S., Suvorov M.S., et al. Statistical characteristics of gas discharge in magnetically controlled contacts at different modes of commutation. Vestnik RGRTU [Vestnik of RSREU], 2013, no. 2, pp. 76--82 (in Russ.).

[25] Yang Z., Lichtenwalner D., Morris A., et al. Contact degradation in hot/cold operation of direct contact micro switches. J. Micromech. Microeng., 2010, vol. 20, no. 10, art. 105028. DOI: https://doi.org/10.1088/0960-1317/20/10/105028

[26] Toler B.F., Coutu R.A.Jr., McBride J.W. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J. Micromech. Microeng., 2013, vol. 23, no. 10, art. 103001. DOI: https://doi.org/10.1088/0960-1317/23/10/103001