|

Accessible Errors in Determining Navigation Parameters Generated by the Astroinertial Navigation System

Authors: Bolotnov А.S., Buryi E.V., Kondrashkin G.V. Published: 01.07.2025
Published in issue: #2(151)/2025  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Design and Instrument Engineering Technology and Electronic Equipment  
Keywords: navigation, navigation system, inertial sensor, inertial measurement unit, astrosensor, astroinertial navigation system

Abstract

The paper considers a method of algorithmic correction used to combine the inertial measurement unit and the astrosensor bases in the astroinertial navigation system. It describes principles of constructing such a system. The paper identifies differences in the nature of errors in the determined navigation parameters and advantages of using the astrosensors as a means for obtaining additional information in correcting the determined navigation parameters. The astronavigation system coordinates are defined and described. The paper presents mathematical relationships and a technique for algorithmic correction based on the coordinates transformation through the Euler angles, as well as a conjugation matrix for instrumental bases of the inertial measurement unit and the astrosensor. Conditions for the necessary measurements are determined. Sequence of actions during the experiment is considered. Experimental results obtained using the algorithmic correction method and without it are compared. The resulting errors in the astroinertial navigation system are experimentally estimated. The paper shows that algorithmic correction allows achieving errors in determining the geographic coordinates no worse than 0.03°. It concludes on the necessity of the algorithmic coupling procedure with bases of the astroinertial system components to achieve the accuracy and operation characteristics

Please cite this article in English as:

Bolotnov A.S., Buryi E.V., Kondrashkin G.V. Accessible errors in determining navigation parameters generated by the astroinertial navigation system. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2025, no. 2 (151), pp. 4--18 (in Russ.). EDN: UESOLZ

References

[1] Kostin V.N. History of the development of domestic marine astrogation systems. Navigatsiya i gidrografiya [Navigation and Hydrography], 2000, vol. 11, pp. 133--137 (in Russ.).

[2] Cherenkov S.G., Chesnokov G.I. Stellar-inertial navigation systems: past, real, future. Istoriya nauki i tekhniki [History of Science and Engineering], 2016, no. 9, pp. 26--35 (in Russ.). EDN: WMUWAD

[3] Salychev O.S. Applied inertial navigation: problems and solutions. Moscow, BMSTU Publ., 2004. EDN: QKEHFR

[4] Kondrashkin G.V., Bolotnov A.S. [Investigation of astroinertial navigation system errors with attitude damping from external linear velocity source]. XLVII Akademicheskie chteniya po kosmonavtike [XLVII Academic Readings on Cosmonautics]. Moscow, BMSTU Publ., 2023, pp. 178--179 (in Russ.). EDN: AQESFA

[5] Dyatlov S.A., Bessonov R.V. Review of stellar sensors of spacecraft. Mekhanika, upravlenie i informatika [Mechanics, Control and Informatics], 2009, no. 1, pp. 11--31 (in Russ.). EDN: OJSITL

[6] Mileris L.L., Mulina E.V., Sidorenko V.S., et al. Substantiation of the need to use the astronavigation system in marine vessels. Vestnik molodezhnoy nauki, 2020, no. 1, pp. 30--42 (in Russ.). EDN: YVNIRU

[7] Quan W., Li J., Gong X., et al. INS/CNS/GNSS integrated navigation technology. Beijing, Springer, 2015.

[8] Grewal M., Weil L., Andrews A. Global positioning systems, inertial navigation and integration. Hoboken, John Wiley & Sons, 2001.

[9] Bolotnov S.A., Gerasimchuk Yu.N., Shkatov M.Yu., et al. Astronomical inertial systems for use in marine navigation complexes. Prikladnaya fotonika [Applied Photonics], 2023, vol. 10, no. 4, pp. 89 --101 (in Russ.). DOI: https://doi.org/10.15593/2411-4375/2023.4.06

[10] Vorobyev L.M. Astronomicheskaya navigatsiya letatelnykh apparatov [Astronomical navigation of aircrafts]. Moscow, Mashinostroenie Publ., 1968.

[11] Fokin L.A., Shiryaev V.I., Podivilova E.O. On the measurement errors analysis of integrated navigation system and its estimation methods. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser. Komp’yuternye tekhnologii, upravlenie, radio-elektronika [Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics], 2012, no. 17, pp. 127--134 (in Russ.). EDN: PEWAML

[12] Miller R., Coulter J.E., Levine S. Miniature optical wide-anglelens Startracker (mini-OWLS). Estimation Theory Symposium, 1992, pp. 499--504.

[13] Quan W., Diao M., Gao W., et al. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor. Meas. Sc. Technol., 2015, vol. 26, no. 11, art. 115101. DOI: https://doi.org/10.1088/0957-0233/26/11/115101

[14] Baburin S.M., Silina V.V., Danilov O.Yu., et al. Sposob postroeniya astroinertsialnoy navigatsionnoy sistemy [Method for construction of astroinercial navigation system]. Patent RU 2641515. Appl. 02.06.2012, publ. 17.01.2018 (in Russ.).

[15] Bolotnov S.A., Braytkrayts S.G., Gerasimchuk Yu.N., et al. Astronavigatsionnaya sistema [Astronomical navigation system]. Patent RU 2607197. Appl. 26.12.2014, publ. 10.01.2017 (in Russ.).

[16] Kornienko V.Ya., Makoveev V.B., Popov A.B., et al. Astronavigatsionnaya sistema [Celestial guidance system]. Patent RU 2378616. Appl. 03.07.2008, publ. 10.01.2010 (in Russ.).

[17] Avanesov G.A., Bessonov R.V., Kurkina A.N., et al. The principles of creating airborne stellar-inertial system. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space], 2013, vol. 10, no. 2, pp. 9--29 (in Russ.). EDN: QZNBNL

[18] Kan S.G., Kuznetsov A.G., Portnov B.I., et al. MIEA foundation and development history --- the history of Russian instrument engineering industry evolution. Istoriya nauki i tekhniki [History of Science and Engineering], 2016, no. 9, pp. 3--18 (in Russ.). EDN: WMUWAD

[19] Avanesov G.A., Forsh A.A., Bessonov R.V., et al. [BOKZ-M star coordinator and prospects of its development]. XIV Sankt-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam [XIV Saint-Petersburg Int. Conf. on Integrated Navigation Systems]. St. Petersburg., TsNII Elektropribor Publ., 2007, pp. 3--14 (in Russ.).

[20] Gerasimchuk Yu.N., Braytkrayts S.G., Bolotnov S.A., et al. The basics of the strapdown astro-inertial navigation system correction determination. Novosti navigatsii [Navigation News], 2011, no. 4, pp. 33--39 (in Russ.). EDN: RBHKZT