|

Possible Joint Estimation Accuracy for Central Frequency and Spectrum Width in a Signal Featuring a Rectangular Spectrum

Authors: Zhurakovskiy V.N., Logvinenko A.S. Published: 28.09.2018
Published in issue: #5(122)/2018  
DOI: 10.18698/0236-3933-2018-5-26-35

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Acoustic  
Keywords: signal, rectangular spectrum, simulation, MATLAB, multivariate Cramér — Rao inequality

We used a multivariate Cramer --- Rao inequality to derive equations describing minimum root-mean-square deviation values for joint estimation of central frequency and width of a signal characterised by a rectangular spectrum but mixed with white Gaussian noise. We provide plots of the root-mean-square deviations as functions of the signal-to-noise ratio and initial signal parameters such as signal spectrum width and sample length. We analysed these results in order to estimate possible requirements for those algorithms under development that deal with joint parameter estimation for the case of a signal featuring a rectangular spectrum, depending on such initial parameters as sampling rate and sample size

References

[1] Kanashchenkov A.I., Merkulov V.I., eds. Zashchita radiolokatsionnykh sistem ot pomekh [Interference protection of radar systems]. Moscow, Radiotekhnika Publ., 2003. 414 p.

[2] Artyushenko V.M., Volovach V.I. Analysis of spectral parameters of Doppler signal reflected by extensive object. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2012, no. 9, pp. 62−67 (in Russ.).

[3] Richards M.A., Scheer J.A., Holm W.A., eds. Principles of modern radar: basic principles. Scitech Publishing, 2010. 960 p.

[4] Skolnik M., Linde G., Meads K. Senrad: an advanced wideband air-surveillance radar. IEEE Transactions on Aerospace and Electronic Systems, 2001, vol. 37, iss. 4, pp. 1163−1175. DOI: 10.1109/7.976957

[5] Bakulev P.A., Stepin V.M. Metody i ustroystva selektsii dvizhushchikhsya tseley [Methods and equipment for moving target selection]. Moscow, Radio i svyaz Publ., 1986. 288 p.

[6] Zhurakovskiy V.N., Kondrashov K.S. Algorithm for separation of mobile and inactive objects in a small-scale surveillance radar. Spetstekhnika i svyaz, 2015, no. 2, pp. 53−58 (in Russ.).

[7] Turchin V.I. Vvedenie v sovremennuyu teoriyu otsenki parametrov signalov [Introduction to the modern theory of signal parameters assessment]. Nizhniy Novgorod, IPF Publ., 2005. 116 p.

[8] Kay S.M. Fundamentals of statistical signal processing. Vol. 1. Estimation theory. Prentice Hall, 1993. 625 p.

[9] Attetkov A.V., Galkin S.V., Zarubin V.S. Metody optimizatsii [Optimization methods]. Moscow, Bauman MSTU Publ., 2001. 440 p.

[10] Dyakonov V., Kruglov V. Matematicheskie pakety rasshireniya MATLAB [Mathematical packages of MATLAB extension]. Saint Petersburg, Piter Publ., 2001. 480 p.