|

Evaluating Capabilities of the GigaSpaceWire Interface Implemented on the Modern Domestic Element Base

Authors: Makovskaya M.O., Sinyagin A.V., Kaznacheev S.A. Published: 01.07.2025
Published in issue: #2(151)/2025  
DOI:

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: GigaSpaceWire, network interface, space industry, high-speed data transfer, baremetal driver, real-time systems

Abstract

Currently, space industry uses a variety of the specialized data transmission interfaces designed to solve specific problems taking into account the element base capabilities. This situation leads to the need to use various interface converters in pairing the dissimilar data transmission lines. As a result, separate characteristics of the systems being created are reduced, and their structural complexity and processing time increase. Thus, there appears a need to apply a unified high-speed network interface as part of the onboard equipment and in the ground product processing. Taking into account the above, network interfaces of the SpaceWire family look the most promising. In connection with the domestic standard coming in force, the paper considers the high-speed GigaSpaceWire interface, i.e., an extension of the SpaceWire interface with the improved characteristics, implemented in the latest domestic element base. In order to assess a possibility of using the GigaSpaceWire as a reliable data transmission interface, a workstation was created, software was developed, and a series of experiments were conducted. It was established that actual characteristics of the GigaSpaceWire controller were not fully corresponding to those declared in the standard, and practical application of the corresponding element base was associated with a number of features

Please cite this article in English as:

Makovskaya M.O., Sinyagin A.V., Kaznacheev S.A. Evaluating capabilities of the GigaSpaceWire interface implemented on the modern domestic element base. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2025, no. 2 (151), pp. 63--77 (in Russ.). EDN: TCTWGI

References

[1] Gorbunov S.F., Grishin V.Yu., Eremeev P.M. Spacecraft network interfaces: development prospects and implementation problems. Nanoindustriya [Nanoindustry], 2019, spec. iss., pp. 128--130 (in Russ.).

[2] Novikov G.A., Platoshin G.A., Sheynin Yu.E. SpaceWire interface application features in avionics suites. Trudy GosNIIAS. Ser. Voprosy avioniki, 2018, no. 7, pp. 41--69 (in Russ.). EDN: YTCOIP

[3] Simakhina E.A., Eremeev P.M., Balizh K.S. [A modern approach to the unification of interfaces in the space industry]. Sb. statey 26-y Mezhdunar. nauch. konf. "Volnovaya elektronika i infokommunikatsionnye sistemy". Ch. 3 [Proc. 26th Int. Sc. Conf. Wave Electronics and Info-Communication Systems. P. 3]. St. Petersburg, SpBGUAP Publ., 2023, pp. 216--219 (in Russ.). EDN: EFKELD

[4] Casas M.F., Parkes S., Florist A.F., et al. Testing SpaceFibre in orbit: the OPS-SAT and NORBY technology demonstrators. ISC, 2022. Available at: https://ieeexplore.ieee.org/document/9944068

[5] Svertilov S.I., Bogomolov V.V., Dementyev Yu.N., et al. [Results of flight exploitation of Moscow university Cubsat satellite constellation]. K.E. Tsiolkovskiy i progress nauki i tekhniki v XXI veke. Mater. 56 Nauch. chteniy. Ch. 1 [K.E. Tsiolkovsky and Progress of Science and Technology in the 21st Century. Proc. 56th Scientific Readings. P. 1]. Kaluga, Eydos Publ., 2021, pp. 21--24 (in Russ.). EDN: OPLPQF

[6] Suvorov E.A., Stepanov V.E., Olenev V.L. Analysis of the SpaceFibre technology for the high-bandwidth onboard networks. Kosmicheskie apparaty i tekhnologii [Spacecrafts & Technologies], 2023, vol. 7, no. 2, pp. 100--106 (in Russ.).DOI: https://doi.org/10.26732/j.st.2023.2.02

[7] Marino A., Leoni A., Sterpaio L.D., et al. SpaceART SpaceWire and SpaceFibre analyser real-time. IEEE 7th MetroAeroSpace, 2020, pp. 244--248. DOI: https://doi.org/10.1109/MetroAeroSpace48742.2020.9160319

[8] Nannipieri P., Dinelli G., Marino A., et al. A serial high-speed satellite communication CODEC: design and complementation of a SpaceFibre interface. Acta Astronautica, 2020, vol. 169, pp. 206--215. DOI: https://doi.org/10.1016/j.actaastro.2020.01.010

[9] Parkes S., Ferrer A., Gonzalez A., et al. SpaceFibre payload data-handling network. ISC, 2022. URL: https://ieeexplore.ieee.org/document/9944056

[10] Maksyutin A.S., Murygin A.V., Ivlenkov D.V., et al. Development of workspace and algorithms for testing SpaceWire onboard equipment. Sibirskiy aerokosmicheskiy zhurnal [Siberian Aerospace Journal], 2021, vol. 22, no. 4, pp. 613--623 (in Russ.).DOI: https://doi.org/10.31772/2712-8970-2021-22-4-613-623

[11] Maksyutin A.S., Kazaykin D.S., Dymov D.V., et al. Development of a methodology for testing SpaceWire network switches. Sibirskiy aerokosmicheskiy zhurnal [Siberian Aerospace Journal], 2022, vol. 23, no. 2, pp. 197--208 (in Russ.).DOI: https://doi.org/10.31772/2712-8970-2022-23-2-197-208

[12] Maksyutin A.S., Kazaykin D.S., Dymov D.V. Applying the hardware and software complex of autonomous testing of the SpaceWire node for testing the VLSI controller of the information and control interface. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-Space Device Engineering and Information Systems], 2023, vol. 10, no. 2, pp. 63--72 (in Russ.). EDN: LMNMMS

[13] Yablokov E.N. Gigaspacewire, problems and decisions. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2016, vol. 18, no. 1-2, pp. 428--431 (in Russ.). EDN: WLWZQD

[14] Sheynin Yu.E., Yablokov E.N., Suvorova E.A., et al. Ustroystvo kommunikatsionnogo interfeysa GigaSpaceWire [GigaSpaceWire communication interface device]. Patent RU 2700560. Appl. 19.06.2018, publ. 17.09.2019 (in Russ.).

[15] Voronin F.A., Nazarov D.S., Pakhmutov P.A., et al. On principles behind developing software for the information and control system of the Russian orbital segment of the international space station. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2018, no. 2 (119), pp. 69--86 (in Russ.). EDN: YWEGDC.DOI: https://doi.org/10.18698/0236-3933-2018-2-69-86

[16] Marchuk T.M. [8B/10B logic coding]. Radiotekhnika i elektronika. Sb. tez. dokl. 56-y Nauch. konf. aspirantov, magistrantov i studentov [Radio Engineering and Electronics. Proc. Abs. 56th Sc. Conf. of Graduate Students, Undergraduates and Students]. Minsk, BGUIR Publ., 2020, pp. 192--193 (in Russ.).

[17] Petrichkovich Ya.Ya., Solokhina T.V., Glushkov A.V., et al. Topologiya mikroprotsessora dlya priema i obrabotki paketnoy informatsii [Microprocessor topology for receiving and processing packet information]. Patent RU 2018630081. Appl. 25.04.2018, publ. 09.06.2018 (in Russ.).

[18] Kostrov V.V., Rakitin A.V. Radar space segment of remote sensing of the Earth in 2023: status and development trends. Radiolokatsionnye i radionavigatsionnye sistemy [Radio Engineering and Telecommunication Systems], 2023, no. 4, pp. 11--31 (in Russ.). DOI: https://doi.org/10.24412/2221-2574-2023-4-11-31

[19] Skripko D.V., Nikitin D.A. [Improving the architecture of operating systems used in rocket and space technology]. Aktualnye problemy aviatsii i kosmonavtiki. Sb. mater. 9 Mezhdunar. nauch.-prakt. konf. T. 1 [Actual Problrms of Aviation and Cosmonautics. Proc. 9th Int. Sc.-Pract. Conf]. Krasnoyarsk, SibGU im. akademika M.F. Reshetneva Publ., 2023, pp. 195--198 (in Russ.). EDN: EQHTIG

[20] Cerf V.G. APIs, standards, and enabling infrastructure. Commun. ACM, 2019, vol. 62, no. 5, p. 5. DOI: https://doi.org/10.1145/3322094