|

The Impact of Initial Alignment and Structure Finite Rigidity Errors on Strapdown Inertial Measurement Unit with Inertial Shock Absorption and Damping System Readings Analysis

Authors: Ilyushin P.A., Naumchenko V.P., Pikunov D.G., Solovyov A.V. Published: 22.04.2025
Published in issue: #1(150)/2025  
DOI:

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: strapdown inertial measure-ment unit, strapdown inertial navigation system, fiber-optics gyro, vibrational-string accelerometer, damping, navigation, alignment, errors

Abstract

Previous works by the authors confirm the fundamental possibility of providing vibration resistance of the vibration-string accelerometer used in the strapless measuring unit and present the appearance of the shock absorption and damping system. To do this, a mathematical model is being created, on the basis of which a Python program has been developed, which makes it possible to study the effectiveness of changing the parameters of the damping and damping system using the iterative method. Here, the impact of the selected depreciation and damping system on the accuracy of the target task is assessed and the features of the block's appearance are determined. The received clarifications are embedded in the Python program. The results of the study are evaluated when iteratively defining the characteristics of the shock absorption and damping system. The mathematical model of a strapless inertial navigation system is based on fiber-optic gyroscopes and vibration-string accelerometers. The impact of the mass of the structural elements of the damping and damping system, as well as the errors of the initial exposure, on the accuracy of the free-form inertial navigation system is assessed. According to the results obtained, it is concluded that further research is needed to find optimal solutions in a multi-criteria problem

Please cite this article in English as:

Ilyushin P.A., Naumchenko V.P., Pikunov D.G., et al. The impact of initial alignment and structure finite rigidity errors on strapdown inertial measurement unit with inertial shock absorption and damping system readings analysis. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2025, no. 1 (150), pp. 91--112 (in Russ.). EDN: XKXQJW

References

[1] Vodicheva L.V., Belskiy L.N., Maslova O.I., et al. Optimal designing of precision small-size non-platform inertial navigation systems for highly maneuverable moving objects. Vestnik SGAU [Vestnik of the Samara State Aerospace University], 2009, no. 4, pp. 186--199 (in Russ.). EDN: NAYGTR

[2] Kozlov D.I., Anshakov G.P., Mostovoy Ya.A., et al. Upravlenie kosmicheskimi apparatami zondirovaniya Zemli. Kompyuternye tekhnologii [Earth-sensing spacecraft management. Computer technology]. Moscow, Mashinostroenie Publ., 1998.

[3] Sapozhnikov I.N., Neizvestnykh Yu.I., Dukhanin N.N., et al. Prioritet --- tochnost [Precision is priority]. Moscow, Restart Publ., 2006.

[4] Kharkov I.A., Shustrov A.D., Selivanova L.M. Three-Component differential vibrating-string accelerometer. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2003, no. 4 (53), pp. 120--125 (in Russ.).

[5] Rosin E.I., Malyshev V.V. Pruzhinnyy amortizator [String shock absorber]. Patent SU 507723. Appl. 06.01.1975, publ. 26.03.1976 (in Russ.).

[6] Rosin E.I., Bogdanova V.D., Rybkin V.K. Prostranstvennyy vibrogasitel [Dimensional vibration damper]. Patent SU 557219. Appl. 30.12.1975, publ. 05.05.1977 (in Russ.).

[7] Sukonkina M.L., Gaynov S.I. Overview of the methods and devices of devices board vibroprotection. Trudy NGTU im. R.E. Alekseeva, 2013, no. 4, pp. 311--319 (in Russ.). EDN: SEZXGX

[8] Alifanov O.M., Medvedev A.A., Sokolov V.P. Small-scale space vehicles as the evolutionary step of transition to micro and nano satellites. Trudy MAI, 2011, no. 49 (in Russ.). Available at: https://trudymai.ru/published.php?ID=28112

[9] Gavrilin B.N., Galavkin V.V., Golubev K.A., et al. Amortizirovannyy blok datchikov pervichnoy informatsii besplatformennykh inertsialnykh navigatsionnykh system [Shock-up primer information sensor unit for free platform inertial navigation systems]. Patent RU 121364. Appl. 16.12.2011, publ. 20.10.2012 (in Russ.).

[10] Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Making a compact gyroscopic angular rate vector meter resistant to mechanical forces. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2018, no. 3, pp. 61--68 (in Russ.). EDN: XYUQZN

[11] Podchezertsev V.P., Topilskaya S.V. Choosing damping parameters for the inertial orientation system. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2021, no. 3 (136), pp. 113--128 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2021-3-113-128

[12] Biryukova M.V., Tufan A., Ermakov V.Yu. Approach to reducing vibroactivity of small spacecraft. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2023, no. 1 (144), pp. 4--21 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2023-1-4-21

[13] Maksimov S.A., Naumchenko V.P., Ilyushin P.A., et al. Strapdown inertial measurement unit shock absorption and damping linear system analysis. Trudy MAI, 2023, no. 129, pp. 1--33 (in Russ.). DOI: https://doi.org/10.34759/trd-2023-129-20

[14] Ilyushin P.A., Naumchenko V.P., Pikunov D.G., et al. [Study to ensure resistance to external vibration disturbances strapdown inertial measurement unit with nonlinear amortization system elements]. Molodezh. Tekhnika. Kosmos. Tr. 14 Obshcheros. molodezh. nauch.-tekh. konf. T. 2 [Youth. Technique. Space. Proc. 14th Russ. Youth Conf. Vol. 2]. St. Petersburg, BSTU Voenmekh Publ., 2022, pp. 29--31 (in Russ.).

[15] Ilyushin P.A., Naumchenko V.P., Pikunov D.G., et al. Modeling of the nonlinear system of damping and damping of a strapless inertial measuring device. Vestnik NIYaU MIFI [Vestnik Natsional’nogo Issledovatel’skogo Yadernogo Universiteta "MIFI"], 2022, vol. 11, no. 6, pp. 403--412 (in Russ.). DOI: https://doi.org/10.26583/vestnik.2022.15

[16] Zhukov Yu.A., Korotkov E.B., Matveev S.A., et al. Protection of precision spacecraft equipment from internal sources of vibration. Kosmicheskie apparaty i tekhnologii [Spacecrafts & Technologies], 2021, no. 4, pp. 217--226 (in Russ.). DOI: https://doi.org/10.26732/j.st.2021.4.05

[17] Nashif A.D., Jones D.I.G., Henderson J.P. Vibration damping. Wiley, 1985.

[18] Chen X., Wang W. Extracting and compensating for FOG vibration error based on improved empirical mode decomposition with masking signal. Appl. Opt., 2017, vol. 56, iss. 13, pp. 3848--3856. DOI: https://doi.org/10.1364/AO.56.003848

[19] Song R., Chen X. Analysis of fiber optic gyroscope vibration error based on improved local mean decomposition and kernel principal component analysis. Appl. Opt., 2017, vol. 56, iss. 8, pp. 2265--2272. DOI: https://doi.org/10.1364/AO.56.002265

[20] Miklyashev A.V. Error of fiber-optic gyroscope at angular oscillations. Izvestiya vuzov. Priborostroenie [Journal of Instrument Engineering], 2019, vol. 62, no. 11, pp. 982--988 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2019-62-11-982-988

[21] Deleye F. SpaceNaute® the HRG based inertial reference system of Ariane 6 European space launcher, Gyroscopy Navig., 2019, vol. 10, no. 1, pp. 1--6. DOI: https://doi.org/10.1134/S2075108719010036

[22] Arnold V.I. Geometriya kvaternionov [Quaternions geometry]. Moscow, MTsNMO Publ., 2017.

[23] Ilyushin P.A., Naumchenko V.P., Pikunov D.G. [Performance of inertial units under the influence of external vibration disturbances analysis]. Novye materialy i tekhnologii v raketno-kosmicheskoy aviatsionnoy i drugikh vysokotekhnologichnykh otraslyakh promyshlennosti. Sb. Mater. 17-y Molodezh. konf. [New Materials and Technologies in Rocket and Space Aviation and Other High-Tech Industries. Proc. 17th Youth Conf.]. Moscow, 2021, pp. 18--24 (in Russ.).

[24] Ilyushin P.A., Naumchenko V.P., Solovyev A.V. [The noises influence estimation of inertial sensors on the accuracy of the gyroscopic platform exhibition]. Tez. dokl. XXII nauch.-tekh. konf. [Abs. XXII Sci.-Tech. Conf.], 2021, pp. 261--263 (in Russ.).

[25] Naumchenko V.P., Ilyushin P.A., Pikunov D.G., et al. Processing of inertial devices readingson unified software and mathematical complex. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2023, vol. 195, no. 4, pp. 8--16 (in Russ.). EDN: GNJHPP

[26] Antonova M.V., Kornyukhin A.V. Vibration tests of strapdown inertial unit based on fiber-optic gyroscopes. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2012, no. 3 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2012-3-122

[27] Kurbatov A.M., Kurbatov R.A. Sposob povysheniya tochnosti volokonno-opticheskikh giroskopov pri vozdeystvii vibratsiy [Method for improving accuracy of fiber-optic gyroscopes under vibration influence]. Patent RU 2627020. Appl. 25.08.2016, publ. 02.08.2017 (in Russ.).