|

Multicriteria Optimization Based on Desired Trajectory Form and Multiprogram Point-to-Point Control

Authors: Voronov E.M., Spokoinyi I.A. Published: 16.04.2018
Published in issue: #2(119)/2018  
DOI: 10.18698/0236-3933-2018-2-87-97

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: multicriteria optimization, point-to-point control, multiprogram control, spatial guidance, nonlinear synthesis

The article considers a promising technology of multicriteria optimization based on multiprogram point-to-point control for forming trajectories ensuring efficient target hit, using the problem of spatial missile guidance as an example. In order to significantly reduce the unknown parameter search space dimension, instead of parametrising the control itself we transition to a search space for parameters of a certain desired reference trajectory form. We form the solution set (state and control vectors as functions of time, plus optimisation criteria values) based on "gravitating" towards reference trajectories and select the most preferable solution

References

[1] Voronov E.M., Savchuk A.M., Spokoynyy I.A., Sychev S.I. Multicriterion optimal spatial nonlinear guidance method. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 6, pp. 126–139 (in Russ.). DOI: 10.18698/0236-3933-2016-6-126-139

[2] Ehrgott M. Multicriteria optimization. Springer, 2005. 323 p.

[3] Voronov E.M. Metody optimizatsii upravleniya mnogoobektnymi mnogokriterialnymi sistemami na osnove stabilno-effektivnykh igrovykh resheniy [Optimization methods for multiobject multicriteria systems control based on stable effective game solutions]. Moscow, Bauman MSTU Publ., 2001. 576 p.

[4] Seredenko N.N., Perikov Yu.A., Druzhaev A.A. Comparative analysis of multicriteria decision making methods. Aktualnye problemy gumanitarnykh i estestvennykh nauk, 2010, no. 1, pp. 83–86 (in Russ.).

[5] Shvarts D.T. Interactive methods for solving multiobjective optimization problem. Review. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2013, no. 4, pp. 245–264 (in Russ.). Available at: http://technomag.bmstu.ru/doc/547747.html

[6] Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh [Optimization methods in exercises and problems]. Moscow, Lan Publ., 2015. 512 p.

[7] Denisova L.A. Mnogokriterialnaya optimizatsiya na osnove geneticheskikh algoritmov pri sinteze sistem upravleniya [Multicriteria optimization based on genetic algorithms in process of management system synthesis]. Omsk: Izd-vo OmGTU Publ., 2014. 170 p.

[8] Parotkin N.Yu. About application of differentiated genetic algorithm for solving multicriteria optimization problems. Reshetnevskie chteniya [Reshetnev Readings], 2013, vol. 2, no. 17, pp. 66–67 (in Russ.).

[9] Sopov E.A., Sopov S.A. Probability-based genetic algorithm for solving complex multiobjective optimization tasks using adaptive mutation operator and Pareto set prediction. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2011, no. 6 (30), pp. 273–282 (in Russ.).

[10] Serov V.A. Genetic algorithms of optimizing control of multiobjective systems under condition of uncertainty based on conflict equilibrium. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2007, no. 4, pp. 70–80 (in Russ.).

[11] Eva Alfaro-Cid, Euan W. McGookin. Genetic programming for the automatic design of controllers for a surface ship. IEEE Transactions on Intelligent Transportation Systems, 2008, vol. 9, no. 2, pp. 311–321. DOI: 10.1109/TITS.2008.922932 Available at: http://ieeexplore.ieee.org/document/4517335

[12] NithyaRani N., GirirajKumar M., Anantharaman N. Modeling and control of temperature process using genetic. IJAREEIE, 2013, vol. 2, no. 11, pp. 5355–5364.

[13] Bushuev A.Yu. Application of perturbation method and sensitivity functions to the problem of optimizing the systems with distributed parameters. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2015, no. 6 (42), pp. 1–9 (in Russ.). DOI: 10.18698/2308-6033-2015-6-1411 Available at: http://engjournal.ru/catalog/mech/mdsb/1411.html