|

Methods for Solving User Authentication and Identification Problems Based on Keystroke Dynamics Analysis

Authors: Yamchenko Yu.V. Published: 20.03.2020
Published in issue: #1(130)/2020  
DOI: 10.18698/0236-3933-2020-1-124-139

 
Category: Informatics, Computer Engineering and Control | Chapter: Theoretical Computer Science, Cybernetics  
Keywords: keystroke dynamics, user, authentication, identification, machine learning, classification methods

Nowadays, information technologies are used in almost every sphere of our life. Large amounts of personal and corporate data are stored in digital form. Thus, the problem of protecting this data from unauthorized access is raised. Access control subsystems and technologies used in these subsystems, in particular, methods of user authentication and identification, play an important role in this case. The paper provides an overview of methods for solving information system user authentication and identification problems based on the analysis of their keystroke dynamics. These tasks are considered in detail, a brief history of methods for keystroke dynamics authentication and identification is described, their advantages and disadvantages compared with other known methods are indicated and the relevance of this line of research is substantiated. The main stages of creating mathematical models for solving these problems are listed. The description of the methods used in each of these stages is also presented

References

[1] Bragina E.K., Sokolov S.S. Modern methods of biometric authentication: review, analysis and determination of outlook. Vestnik AGTU [Vestnik of ASTU], 2016, no. 1 (61), pp. 40--44 (in Russ.).

[2] Alsultan A., Warwick K. Keystroke dynamics authentication: a survey of free-text methods. IJCSI, 2013, vol. 10, no. 4, p. 10.

[3] Shepherd S.J. Continuous authentication by analysis of keyboard typing characteristics. European Convention on Security and Detection, 1995, pp. 111--114. DOI: https://doi.org/10.1049/cp:19950480

[4] Monrose F., Rubin A. Authentication via keystroke dynamics. Proc. 4th ACM CCCS, 1997, pp. 48--56. DOI: https://doi.org/10.1145/266420.266434

[5] Umphress D., Williams K. Identity verification through keyboard characteristics. Int. J. Man Mach. Stud., 1985, vol. 23, iss. 3, pp. 263--273. DOI: https://doi.org/10.1016/S0020-7373(85)80036-5

[6] Leggett J., Williams G. Verifying identity via keystroke characteristics. Int. J. Man Mach. Stud., 1988, vol. 28, iss. 1, pp. 67--76. DOI: https://doi.org/10.1016/S0020-7373(88)80053-1

[7] Leggett J., Williams G., Umphress D. Verification of user identity via keystroke characteristics. In: Human Factors in Management Information Systems, 1988, pp. 29--41.

[8] Obaidat M.S., Sadoun B. Verification of computer users using keystroke dynamics. IEEE Trans. Syst., Man. Cybern. B, 1997, vol. 27, iss. 2, pp. 261--269. DOI: https://doi.org/10.1109/3477.558812

[9] Сидоркина И.Г., Савинов А.Н. Три алгоритма управления доступом к КСИИ на основе распознавания клавиатурного почерка оператора. Вестник Чувашского университета, 2013, № 3, c. 293--301.

[10] Karnan M., Akila M., Krishnaraj N. Biometric personal authentication using keystroke dynamics: a review. Appl. Soft. Comput., 2011, vol. 11, iss. 2, pp. 1565--1573. DOI: https://doi.org/10.1016/j.asoc.2010.08.003

[11] Chandrasekar V., Kumar S. Biometric based keystroke dynamics authentication --- a review. Asian J. Res. Soc. Sci. Human., 2016, vol. 6, no. 9, pp. 698--718.

[12] Zaidan D., Salem A., Swidan A., et. al. Factors affecting keystroke dynamics for verification data collecting and analysis. Proc. 8th ICIT, 2017, pp. 392--398.

[13] Ali M., Monaco J., Tappert C., et. al. Keystroke biometric systems for user authentication. J. Sign. Process Syst., 2017, vol. 86, iss. 2-3, pp. 175--190. DOI: https://doi.org/10.1007/s11265-016-1114-9

[14] Salem A., Sharieh A., Sleit A., et.al. Enhanced authentication system performance based on keystroke dynamics using classification algorithms. KSII TIIS, 2019, vol. 13, no. 8, pp. 4076--4092. DOI: https://doi.org/10.3837/tiis.2019.08.014

[15] Pisani P.H., Lorena A.C., de Carvalho A.C. Adaptive approaches for keystroke dynamics. IJCNN, 2015, pp. 1--8. DOI: https://doi.org/10.1109/IJCNN.2015.7280467

[16] Bergadano F., Gunetti D., Picardi C. User authentication through keystroke dynamics. TISSEC, 2002, vol. 5, no. 4, pp. 367--397. DOI: https://doi.org/10.1145/581271.581272

[17] Monaco J.V., Ali M.L., Tappert C.C. Spoofing key-press latencies with a generative keystroke dynamics model. Proc. IEEE 7th BTAS, 2015, pp. 1--8. DOI: https://doi.org/10.1109/BTAS.2015.7358795

[18] Al-Obaidi N., Al-Jarrah M. Statistical median-based classifier model for keystroke dynamics on mobile devices. Proc. 6th ICDIPC, 2016, pp. 186--191. DOI: https://doi.org/10.1109/ICDIPC.2016.7470816

[19] Samura T., Nishimura H. Keystroke timing analysis for individual identification in Japanese free text typing. ICCAS-SICE, 2009, pp. 3166--3170.

[20] Park S., Park J., Cho S. User authentication based on keystroke analysis of long free texts with a reduced number of features. Proc. 2nd ICCSNA, 2010. DOI: https://doi.org/10.1109/ICCSNA.2010.5588979

[21] Gunetti D., Picardi C. Keystroke analysis of free text. TISSEC, 2005, vol. 8, no. 3, pp. 312--347. DOI: https://doi.org/10.1145/1085126.1085129

[22] Bours P. Continuous keystroke dynamics: a different perspective towards biometric evaluation. Inf. Secur. Tech. Report, 2012, vol. 17, iss. 1-2, pp. 36--43. DOI: https://doi.org/10.1016/j.istr.2012.02.001

[23] Bours P. Continuous keystroke dynamics: a different perspective towards biometric evaluation. Inf. Secur. Tech. Report, 2012, vol. 17, iss. 1-2, pp. 36--43. DOI: https://doi.org/10.1016/j.istr.2012.02.001

[24] Curtin M., Tappert C., Villani M. Keystroke biometric recognition on long-text input: a feasibility study. IMECS, 2006, p. 5.

[25] Gunetti D., Ruffo G. Intrusion detection through behavioral data. In: Hand D.J., Kok J.N., Berthold M.R. (eds). Advances in Intelligent Data Analysis. IDA 1999. Lecture Notes in Computer Science, vol. 1642. Berlin, Heidelberg, Springer, pp. 383--394. DOI: https://doi.org/10.1007/3-540-48412-4_32

[26] Bours P., Barghouthi H. Continuous authentication using biometric keystroke dynamics. NISK, 2009, pp. 1--7.

[27] Janakiraman R., Sim T. Dynamics in a general setting. In: Advances in Biometrics, 2007, vol. 4642, pp. 584--593.

[28] Hu J., Gingrich D., Sentosa A. A k-nearest neighbor approach for user authentication through biometric keystroke dynamics. IEEE ICC, 2008, pp. 1556--1560. DOI: https://doi.org/10.1109/ICC.2008.301

[29] Davoudi H., Kabir E. A new distance measure for free text keystroke authentication. Proc. 14th Int. CSICC, 2009, pp. 570--575. DOI: https://doi.org/10.1109/CSICC.2009.5349640

[30] Zhong Y., Deng Y. A survey on keystroke dynamics biometrics: approaches, advances and evaluations. In: Recent Advances in User Authentication Using Keystroke Dynamics Biometrics. Science Gate Publ., 2015, pp. 1--22.

[31] Lin C.-H., Liu J.-C., Lee K.-Y. On neural networks for biometric authentication based on keystroke dynamics. Sens. Mater., 2018, vol. 30, no. 3 (1), pp. 385--396. DOI: https://doi.org/10.18494/SAM.2018.1757

[32] Wankhede S., Verma S. Keystroke dynamics authentication system using neural network. IJIRD, 2014, vol. 3, no. 1, pp. 157--164.

[33] Vinayak R., Arora K. A survey of user authentication using keystroke dynamics. IJSRET, 2015, vol. 4, no. 4, pp. 378--384.