Bionformatics System with Wrist Joint Movement Classfier Based on Fuzzy Logic
Authors: Gavrilov A.I., Soe Soe Thaw Oo | Published: 06.12.2016 |
Published in issue: #6(111)/2016 | |
DOI: 10.18698/0236-3933-2016-6-71-84 | |
Category: Informatics, Computer Engineering and Control | Chapter: Theoretical Computer Science, Cybernetics | |
Keywords: fuzzy logic, electromyography, pattern recognition, multifunctional prosthesis |
The paper considers research and development of bioinformatics system based on the electromyography data (EMG). We consider a multilevel structure for EMG signal processing with the focus on collecting information of the wrist joint movement and recognition of the motion type with the fuzzy logic classifier. The simulation results show high probability of movement type detection (95%), which proves the possibility of applying the proposed approaches in control systems for multifunction prostheses.
References
[1] Soe Soe Thaw Oo, Gavrilov A.I. Electromyography data-processing system. Molodezhniy nauchno-tekhnicheskiy vestnik [Electronic periodical youth scientific and technical bulletin], 2015, no. 11. Available at: http://sntbul.bmstu.ru/doc/817650.html (accessed 07.09.2015) (in Russ.).
[2] Zecca M., Micera S., Carrozza M.C., Dairo P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical reviews in biomedical engineering, 2002, no. 30, pp. 459-485.
[3] Fraiwan L., Awwad M., Mahdawi M., Jamous Sh. Real time virtual prosthetic hand controlled using EMG signals. 1st Middle East Conference on Biomedical Engineering, 2011, pp. 225-227. DOI: 10.1109/MECBME.2011.5752106
[4] Pupkov K.A., Gavrilov A.I., Shakhnazarov G.A. Integration of Control Technologies in the High Accuracy and Relyability Intelligent Systems. Vestnik RUDN. Ser. Inzhenernye issledovaniya [Bulletin of PFUR. Ser. Engineering researches], 2011, no. 4, pp. 60-67 (in Russ.).
[5] Andrianov D.A., Gavrilov A.I. System development for human biological parameter analysis using neural net technologies. Molodezhniy nauchno-tekhnicheskiy vestnik [Electronic periodical youth scientific and technical bulletin], 2012, no. 3. Available at: http://sntbul.bmstu.ru/doc/458150.html (accessed 04.12.2014) (in Russ.).
[6] Ryait H.S., Arora A.S., Agarwal R. SEMG signal analysis at acupressure points for elbow movement. Journal of electromyography and Kinesiology, 2011, vol. 21, no. 5, pp. 868-876. DOI: 10.1016/j.jelekin.2011.07.002
[7] Ahmad S.A., Ishak A.J., Ali S. Classification of surface electromyographic signal using fuzzy logic for prosthesis control. IEEE EMBS Conference on biomedical engineering and science, 2010, pp. 471-474. DOI: 10.1109/IECBES.2010.5742283
[8] Shalu George K., Sivanandan K.S, Mohandas K.P. Speed based EMG classification using fuzzy logic. International Review on Computers and Softwares, 2012, vol. 7, no. 3, pp. 950-958.
[9] Crawford B., Miller K., Shenoy Rao R. Real-time classification of electromyographic signals for robotic control. Proceeding of AAAI, 2005, pp. 523-528.
[10] Suranov A.Ya. LabVIEW. Spravochnik po funktsiyam [LabVIEW. Function guide]. Moscow, DMK Press Publ., 2007. 536 p.
[11] Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy [Linguistic variable concept and its use for taking approximate solutions]. Moscow, Mir Publ., 1976. 165 p.
[12] Zade L.A. Osnovy novogo podkhoda k analizu slozhnykh sistem i protsessov prinyatiya resheniy: Matematika segodnya [Fundamentals of new approach to complex system analysis and decision making procedure]. Moscow, Znanie Publ., 1974. Pp. 5-49.