|

Intelligent Computing Technologies in Problems of Improving Integrated Navigation System Accuracy

Authors: Al Bitar N., Gavrilov A.I. Published: 17.02.2019
Published in issue: #1(124)/2019  
DOI: 10.18698/0236-3933-2019-1-62-89

 
Category: Informatics, Computer Engineering and Control | Chapter: Elements and Devices of Computer Engineering and Control Systems  
Keywords: inertial navigation systems, satellite navigation systems, Kalman filter, intelligent computing, neural networks

The Kalman filter used to be the only means of integrating inertial and satellite navigation systems; however, it has its limitations, which prompted researchers to consider alternative integration methods, predominantly those based on intelligent computing. The last 15 years saw a number of investigations deal with the possibility of employing intelligent computing techniques in the field of integrated inertial and satellite navigation systems, implementing various approaches to combining computational intelligence modules with other inertial and satellite navigation system units. As a result, several schemes emerged, the structure of which varies with the type of computational intelligence modules and the role they play in the inertial and satellite navigation systems. The paper presents a classification of intelligent navigation data evaluation schemes taking into account their structural specifics and principles of operation. We performed a comparative analysis of intelligent computing algorithm efficiency in terms of how accurate they are and how feasible to implement in inertial and satellite navigation systems. We also highlight certain aspects that should be considered in further research in this field

References

[1] Grewal M.S., Weill L.R., Andrews A.P. Global positioning systems, inertial navigation, and integration. John Wiley & Sons, 2007.

[2] Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS - global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer, 2008.

[3] Farrell J., Barth M. The global positioning system and inertial navigation. McGraw-Hill, 1999.

[4] Matveev V.V. Inertsialnye navigatsionnye sistemy [Inertial navigation systems]. Tula, TulGU Publ., 2012.

[5] Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsialnykh navigatsionnykh sistem [Fundamentals of designing strap down inertial navigation systems]. St. Petersburg, OAO Kontsern "TsNII "Elektropribor" Publ., 2009.

[6] Brown R.G., Hwang P.Y. Introduction to random signals and applied Kalman filtering: with MATLAB. Exercises and solutions. Wiley, 1997.

[7] Crassidis J.L., Junkins J.L. Optimal estimation of dynamic systems. CRC Press, 2011.

[8] Vanicek P., Omerbasic M. Does a navigation algorithm have to use a Kalman filter? CASI, 1999, vol. 45, no. 3, pp. 292–296.

[9] Sharaf R., Taha M., Tarbouchi M., et al. Merits and limitations of using fuzzy inference system for temporal integration of INS/GPS in vehicular navigation. Soft Comput., 2007, vol. 11, iss. 9, pp. 889–900. DOI: 10.1007/s00500-006-0140-0

[10] Potapov A.S. Tekhnologii iskusstvennogo intellekta [Artificial intellect technologies]. St. Petersburg, SPbGU ITMO Publ., 2010.

[11] Haykin S. Neural networks: a comprehensive foundation. Prentice Hall, 1998.

[12] Eiben A.E., Smith J.E. Introduction to evolutionary computing. Springer, 2003.

[13] Giarratano J.C., Riley G. Expert systems: principles and programming. Brooks/Cole, 1989.

[14] Mitchell M. An introduction to genetic algorithms. MIT Press, 1998.

[15] Chiang K.-W., Noureldin A., El-Sheimy N. A new weights updating method for neural networks based INS/GPS integration architectures. Meas. Sci. Technol., 2004, vol. 15, no. 10, pp. 2053–2061. DOI: 10.1088/0957-0233/15/10/015

[16] El-Sheimy N., Chiang K.-W., Noureldin A. The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments. IEEE Trans. Instrum. Meas., 2006, vol. 55, no. 5, pp. 1606–1615. DOI: 10.1109/TIM.2006.881033

[17] Noureldin A., Osman A., El-Sheimy N. A neuro-wavelet method for multi-sensor system integration for vehicular navigation. Meas. Sci. Technol., 2003, vol. 15, no. 2, pp. 404–412. DOI: 10.1088/0957-0233/15/2/013

[18] Noureldin A., El-Shafie A., El-Sheimy N. Adaptive neuro-fuzzy module for inertial navigation system/global positioning system integration utilising position and velocity updates with real-time cross-validation. IET Radar, Sonar Nav., 2007, vol. 1, iss. 5, pp. 388–396. DOI: 10.1049/iet-rsn:20070001

[19] Chiang K.-W., Noureldin A., El-Sheimy N. Constructive neural-networks-based MEMS/GPS integration scheme. IEEE Trans. Aerosp. Electron. Syst., 2008, vol. 44, iss. 2, pp. 582–594. DOI: 10.1109/TAES.2008.4560208

[20] Fahlman S.E., Lebiere C. The cascade-correlation learning architecture. Advances in Neural Information Processing Systems, 1990, vol. 2, pp. 524–532.

[21] Breiman L. Random forests. Machine Learning, 2001, vol. 45, iss. 1, pp. 5–32. DOI: 10.1023/A:1010933404324

[22] Adusumilli S., Bhatt D., Wang H., et al. A low-cost INS/GPS integration methodology based on random forest regression. Expert Syst. Appl., 2013, vol. 40, iss. 11, pp. 4653–4659. DOI: 10.1016/j.eswa.2013.02.002

[23] More J.J. The Levenberg  - Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, 1978, pp. 105–116.

[24] Sharaf R., Noureldin A., Osman A., et al. Online INS/GPS integration with a radial basis function neural network. IEEE Aerosp. Electron. Syst. Mag., 2005, vol. 20, iss. 3, pp. 8–14. DOI: 10.1109/MAES.2005.1412121

[25] Sharaf R., Noureldin A. Sensor integration for satellite-based vehicular navigation using neural networks. IEEE Trans. Neural Netw., 2007, vol. 18, iss. 2, pp. 589–594. DOI: 10.1109/TNN.2006.890811

[26] Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., 1993, vol. 23, iss. 3, pp. 665–685. DOI: 10.1109/21.256541

[27] Taha M.R., Noureldin A., El-Sheimy N. Improving INS/GPS positioning accuracy during GPS outages using fuzzy logic. Proc. 16th Int. Tech. Meeting of the Satellite Division of the Inst. of Navigation (ION GPS/GNSS 2003). Portland, 2003, pp. 499–508.

[28] Bezdek J.C. Objective function clustering. In: Pattern recognition with fuzzy objective function algorithms. Springer, 1981, pp. 43–93.

[29] Noureldin A., El-Shafie A., Taha M.R. Optimizing neuro-fuzzy modules for data fusion of vehicular navigation systems using temporal cross-validation. Eng. Appl. Artif. Intel., 2007, vol. 20, iss. 1, pp. 49–61. DOI: 10.1016/j.engappai.2006.03.002

[30] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 1995, vol. 14, no. 2, pp. 1137–1145.

[31] Hasan A.M., Samsudin K., Ramli A.R., et al. Automatic estimation of inertial navigation system errors for global positioning system outage recovery. J. Aerospace Eng., 2011, vol. 225, iss. 1, pp. 86–96. DOI: 10.1243/09544100JAERO731

[32] Hasan A.M., Samsudin K., Ramli A.R. Optimizing of ANFIS for estimating INS error during GPS outages. J. Chin. Inst. Eng., 2011, vol. 34, iss. 7, pp. 967–982. DOI: 10.1080/02533839.2011.591970

[33] Kennedy J. Particle swarm optimization. In: Encyclopedia of machine learning. Springer, 2011, pp. 760–766.

[34] Hou H., El-Sheimy N. Inertial sensors errors modeling using Allan variance. Proc. 16th Int. Tech. Meeting of the Satellite Division of the Inst. of Navigation (ION GPS/GNSS 2003). Portland, 2016, pp. 1209–1213.

[35] Goodall C., Syed Z., El-Sheimy N. Improving INS/GPS navigation accuracy through compensation of Kalman filter errors. IEEE Veh. Tech. Conf., 2006, pp. 1090–3038. DOI: 10.1109/VTCF.2006.578

[36] Abdel-Hamid W., Noureldin A., El-Sheimy N. Adaptive fuzzy prediction of low-cost inertial-based positioning errors. IEEE Trans. Fuzzy Syst., 2007, vol. 15, iss. 3, pp. 519–529. DOI: 10.1109/TFUZZ.2006.889936

[37] Noureldin A., Karamat T.B., Eberts M.D., et al. Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications. IEEE Trans. Veh. Tech., 2009, vol. 58, iss. 3, pp. 1077–1096. DOI: 10.1109/TVT.2008.926076

[38] Wang J.J., Wang J., Sinclair D., et al. Neural network aided Kalman filtering for integrated GPS/INS geo-referencing platform. 5th Symp. Mobile Mapping Tech., 2007. pp. 1–6.

[39] Chen L., Fang J. A hybrid prediction method for bridging GPS outages in high-precision POS application. IEEE Trans. Instrum. Meas., 2014, vol. 63, iss. 6, pp. 1656–1665. DOI: 10.1109/TIM.2013.2292277

[40] Huang G.B., Wang D.H., Lan Y. Extreme learning machines: a survey. Int. J. Mach. Learn. & Cyber., 2001, vol. 2, iss. 2, pp. 107–122. DOI: 10.1007/s13042-011-0019-y

[41] Jingsen Z., Wenjie Z., Bo H., et al. Integrating extreme learning machine with Kalman filter to bridge GPS outages. ICISCE, Beijing, 2016, pp. 420–424. DOI: 10.1109/ICISCE.2016.98

[42] Kasabov N., Filev D. Evolving intelligent systems: methods, learning, & applications. 2006 Int. Symp. Evolv. Fuzzy Syst. Ambelside, United Kingdom, 2006, pp. 8–18.

[43] Boulton A. Data-driven learning: taking the computer out of the equation. Lang. Learn., 2010, vol. 60, iss. 3, pp. 534–572. DOI: 10.1111/j.1467-9922.2010.00566.x

[44] Schmidhuber J. Deep learning in neural networks: an overview. Neur. Networks, 2015, vol. 61, pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003