|

Engineering method integrated with CAD-system for optimizing the horizontal empennage parameters of the maneuverable aircraft

Authors: Romanova T.N., Paschenko O.B., Gavrilova N.Yu., Schetinin G.A. Published: 08.04.2016
Published in issue: #2(107)/2016  
DOI: 10.18698/0236-3933-2016-2-40-52

 
Category: Aviation, Rocket and Space Engineering | Chapter: Innovation Technologies in Aerospace Activity  
Keywords: CAD-system, CAE-system, multi-objective optimization, horizontal aircraft empennage, moment of the horizontal empennage

This work describes the design of the horizontal empennage of a maneuverable aircraft in a unified environment combined with CAD/CAE-systems. The development of a digital model of the horizontal empennage ensures the compliance with all specified criteria. We can estimate the efficiency of the empennage using the value of moment produced by the horizontal empennage which the empennage can create with respect to the corresponding axis of the aircraft. In the study we test several optimization methods of for supersonic aircraft and develop a new optimization method, which enables us to obtain the optimal geometrical characteristics of the horizontal empennage in the automatic mode in the created automated adaptive parametric system in the application "Modelling" CAD-system NX 7.5. The adaptive parametric system is a parameterized model of the kinematic control scheme over the horizontal aircraft empennage in several positions.

References

[1] Burnaev E., Gubarev F., Morozov S., Prokhorov A., Khonich D. Engineering computations automation, data analysis and optimization using PSE/MACROS. Available at: https://www.datadvance.net/media/publication/engineering-compu-tationsautomation,-data-analysis-and-optimization-using-pse/macros.html

[2] Balakin V.L., Lazarev Yu.N. Dinamika poleta samoleta. Ustoychivost’ i upravlyaemost’ prodol’nogo dvizheniya [Aircraft Flight Dynamics. Stability and Controllability of the Longitudinal Motion]. Electron. lectures. The Russian Ministry of Education and Science. Samara State Aerospace University, 2011. 48 p.

[3] Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Ustoychivost’ i upravlyaemost’ letatel’nykh apparatov [Flight Dynamics. Stability and Controllability of Flight Vehicles]. Moscow, Mashinostroenie Publ., 1965. 502 p.

[4] Standard RF GOST 4401-81 Atmosfera standartnaya. Parametry [State Standard 4401-81. The Standard Atmosphere. Parameters]. Moscow, Izd. Stantartov Publ., 180 p.

[5] Nogin V.D. Prinyatie resheniy v mnogokriterial’noy srede: kolichestvennyy podkhod [Decision-Making in Multicriteria Environment: A Quantitative Approach]. Moscow, Fizmatlit Publ., 2005. 176 p.

[6] Goncharov P.S., Artamonov I.A., Khalitov T.F., Denisikhin S.V., Sotnik D.E. NX Advanced Simulation. Inzhenernyy analiz [Engineering Analysis]. Moscow, DMK Press, 2012. 504 p.

[7] Kuz’mik P.K., Norenkov I.P. Informatsionnaya podderzhka trudoemkikh izdeliy. CALS-tekhnologii [Information Support of Labor-Intensive Products. CALS-Technologies]. Moscow, MGTU im. N.E. Baumana Publ., 2002. 320 p.