|

Multicriteria Synthesis of Trajectory Adaptation Rules for the Three Channel Stabilization System Parameters of Unmanned Aircraft

Authors: Voronov E.M., Serov V.A., Klishin M.A., Lyubavskiy K.K., Savchuk A.S. Published: 15.06.2016
Published in issue: #3(108)/2016  
DOI: 10.18698/0236-3933-2016-3-24-41

 
Category: Aviation, Rocket and Space Engineering | Chapter: Dynamics, Ballistics, Flying Vehicle Motion Control  
Keywords: multicriteria optimization, stabilization system, efficiency indices, unmanned aircraft, genetic algorithm, testing

The purpose of this research was to develop a formalized procedure for forming the work space of the adjustable parameters of unmanned aircraft stabilization system on the basis of multicriteria optimization genetic algorithms set. This approach is applied to solve the problem of trajectory adaptation rules synthesis for the three channel stabilization system parameters. The findings of the research illustrate the efficiency of the developed computational procedures.

References

[1] Polyak B.T., Shcherbakov P.S. Robastnaya ustoychivost’ i upravlenie [Robust Stability and Control]. Moscow, Nauka Publ., 2002. 303 p.

[2] Weinmann A. Uncertain models and robust control. Wien, Springer, 1991.

[3] Saushev A.V. Methods of linear approximation of boundary points of areas of operability of technical systems. Zhurnal universiteta vodnykh kommunikatsiy, 2013, iss. 3(19), pp. 41-51 (in Russ.).

[4] Saushev A.V. Parametric synthesis of technical systems based on the linear approximation of the operational capability range. Optoelectronics, instrumentation and data processing, 2013, no. 1, pp. 61-67.

[5] Digo G.B., Digo N.B. Using ellipsoids to describe the operational capability Range. Informatika i sistemy upravleniya, 2008, no. 1(15), pp. 9-16 (in Russ.).

[6] Haraya I.A. Structure of the tolerable solution set of an interval linear system. Vychislitel’nye tekhnologii [Computational Technologies], 2005, no. 5(10), pp. 103-119 (in Russ.).

[7] Zubov V.I. Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya [Mathematical Methods for Studying Automatic Control Systems]. Leningrad, Mashinostroenie Publ., 1974. 336 p.

[8] Serov V.A. Genetic algorithms of optimizing control of multi-objective systems under condition of uncertainty based on conflict equilibrium. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2007, no. 4, pp. 70-80 (in Russ.).

[9] Egupov N.D., ed. Metody robastnogo neyro-nechetkogo i adaptivnogo upravleniya [Methods of Robust Neuro-Fuzzy and Adaptive Control]. Moscow, MGTU im. N.E. Baumana Publ., 2001. 744 p.

[10] Dorf R.C., Bishop R.H. Modern Control Systems - Pearson Education, N.J., Upper Saddle River, 2008.

[11] Voronov E.M. Metody optimizatsii upravleniya mnogoob"ektnymi mnogokriterial’nymi sistemami na osnove stabil’no-effektivnykh igrovykh resheniy [Optimization Methods for Multiobject Multicriteria System Control on the Basis of Steady-Effective Gaming Solutions]. Moscow, mGtU im. N.E. Baumana Publ., 2001. 576 p.

[12] Serov V.A., Khitrin V.V. Evolutionary computing technology, multi-criteria optimization and dynamic system control. Tr. Inst. sistemnogo analiza RAN. Dinamika neodnorodnykh system [Proc. of the Institute for System Analysis, RAS. Dynamics of Inhomogeneous Systems]. Ed. by Popkov Yu. S. Moscow, KomKniga Publ., 2008, iss. 32(3), pp. 61-71 (in Russ.).

[13] Aksenov A.S., Voronov E.M., Lyubavskiy K.K., Sychev S.I. Multi-criteria parametric optimization of the triple channel cross-coupling stabilizing system of an aircraft. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 3, pp. 16-36 (in Russ.).

[14] Lyubavskiy K.K., Voronov E.M., Aksenov A.S., Sychev S.I., Serov V.A., Klishin M.A. Multicriteria Optimization of Three-Channel Stabilization System of Anti-Ship Missile Taking into Account the Dynamic Effect of Cross-Linking. Navigatsiya, navedenie i upravlenie letatel’nymi apparatami. Tez. dokl. Vtoroy vseros. nauch.-tekh. konf [Flight Vehicle Navigation, Guidance and Control. Abstracts of the Second All-Russian Sci. and Tech. Conf.]. Moscow-Ramenskoe, 2015, September 22-23. Moscow, Nauchtekhlitizdat Publ., 2015, pp. 71-74 (in Russ.).

[15] Skogestad S., Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Chichester, West Sussex, England, UK, John Wiley & Sons, 2005.

[16] Durham Wayne. Aircraft Flight Dynamics and Control. Wiley, 2013.