On the Loads on Multipurpose Laboratory Module Construction Elements During the Autonomous Flight Phase
Authors: Prut’ko A.A., Sumarokov A.V. | Published: 12.04.2017 |
Published in issue: #2(113)/2017 | |
DOI: 10.18698/0236-3933-2017-2-123-138 | |
Category: Aviation, Rocket and Space Engineering | Chapter: Dynamics, Ballistics, Flying Vehicle Motion Control | |
Keywords: International Space Station, multipurpose laboratory module, Russian segment, eigenfrequencies, loads on construction, guidance, navigation and control system |
This purpose of this work was to solve the task of estimating multipurpose laboratory module construction strength. Algorithms for calculating the loads on the solar array drive assembly are integrated into a closed motion simulation loop as part of the workstation of guidance, navigation and control system algorithms developer. In the modeling process on each computational cycle when the actuators (whose function is performed by jet engines) were working, we calculated the loads on solar battery drives. As a part of the stand we built the format for controlling the forces and moments acting on the solar array drive assembly as a result of the work of guidance, navigation and control system. Moreover, we managed to implement the control of critical load level excess.
References
[1] Legostaev V.P., Markov A.V., Sorokin I.V. The ISS Russian segment utilization: research accomplishments and prospects. Kosmicheskaya tekhnika i tekhnologii [Space Engineering and Technologies], 2013, no. 2, pp. 3-18 (in Russ.). Available at: http://www.energia.ru/ktt/archive/2013/02-2013/02-01.pdf
[2] Prut’ko A.A., Sumarokov A.V. Development of load model for elements of multipurpose laboratory module on autonomous flight phase. Navigatsiya i upravlenie dvizheniem. Materialy XVIII konf. molodykh uchenykh [Navigation and movement control. Proc. XVIII conf. of young scientists]. Sankt-Petersburg, Kontsern "TsNII "Elektropribor" Publ., 2016, pp. 516-522 (in Russ.).
[3] Sumarokov A.V. On movement control on multirole laboratory module by means of jet engine on autonomous flight segment. Navigatsiya i upravlenie dvizheniem. Materialy XIV konf. molodykh uchenykh [Navigation and movement control. Proc. XIV conf. of young scientists]. Sankt-Petersburg, Kontsern "TsNII "Elektropribor" Publ., 2010, pp. 157-164 (in Russ.).
[4] Sumarokov A.V. Upravlenie dvizheniem mnogotselevogo laboratornogo modulya posredstvom dvigatel’noy ustanovki [Movement control of multirole laboratory module by means of propulsion installation]. Trudy RKT. Seriya 12. Vyp. 3. [Proc. RKT. Ser. 12. Iss. 3.]. Korolev, 2012, pp. 87-90, pp. 12-16 (in Russ.).
[5] Sumarokov A.V., Timakov S.N. On an adaptive control system for angular motion of a communication satellite. Izvestiya RAN. Teoriya i sistemy upravleniya, 2008, no. 5, pp. 131-141 (in Russ.). (Eng. version of journal: Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 795-805. DOI: 10.1134/S1064230708050134 Available at: http://link.springer.com/article/10.1134/S1064230708050134 )
[6] Borisov M.I., Vladykin S.A., Zhartovskiy G.S., Lozhkin D.S., Pakhmutov P.A., Pochekutov D.V., Sumarokov A.V., Fedoseev S.V. Angular accelerometer for bench microvibration testing of high-precision guidance and stabilization system for line-of-sight of science hardware. Kosmicheskaya tekhnika i tekhnologii [Space Engineering and Technologies], 2016, no. 2, pp. 62-69 (in Russ.).
[7] Zhirnov A.V., Timakov S.N. Algorithm of thruster failure detection for the International space station based on self-adjusting onboard model of angular motion dynamics. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 4, pp. 98-114. DOI: 10.18698/0236-3933-2016-4-98-114
[8] Timakov S.N., Zhirnov A.V. Algorithm of active damping of elastic oscillations of the international space station construction. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 3, pp. 37-53.
[9] Gallagher R.H. Finite element analysis: fundamentals. Prentice-Hall, 1974, 420 p. (Russ. ed.: Metod konechnykh elementov. Osnovy. Moscow, Mir Publ., 1984. 428 p.).
[10] Branets V.N., Shmyglevskiy I.P. Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh system [Introduction to theory of gimballess inertial navigation systems]. Moscow, Nauka Publ., 1992. 280 p.
[11] Gladyshev A.D., Sumarokov A.V. Evaluation algorithm for spacecraft motion variables. Navigatsiya i upravlenie dvizheniem. Materialy XV konf. molodykh uchenykh [Navigation and movement control. Proc. XV conf. of young scientists]. Sankt-Petersburg, Kontsern "TsNII "Elektropribor" Publ., 2013, pp. 202-209.