Comparative Analysis of Aerosol Lidar Potential Possibilities to Measure Wind Speed in Different Spectral Ranges
Авторы: Belov M.L., Samsonova A.A., Filimonov P.A., Ivanov S.E., Gorodnichev V.A. | Опубликовано: 22.03.2022 |
Опубликовано в выпуске: #1(138)/2022 | |
DOI: 10.18698/0236-3933-2022-1-49-61 | |
Раздел: Приборостроение, метрология и информационно-измерительные приборы и системы | Рубрика: Оптические и оптико-электронные приборы и комплексы | |
Ключевые слова: atmosphere laser sensing, wind speed, aerosol lidar |
Abstract
Results are provided of a study devoted to the atmosphere optical state influence on the wind aerosol lidar sensing range and comparison of range estimates obtained for different sensing wavelengths in ultraviolet, visible and near-infrared ranges. It is demonstrated that the aerosol lidar sensing range significantly depends on the Earth atmosphere optical state. The maximum laser sensing range is realized at the wavelength of 1.06 μm dangerous for vision. Sensing wavelengths of 0.355, 1.57 and 2.09 μm are potentially safe for vision. Laser sensing range for the wavelength of 2.09 μm is slightly inferior to the sensing range of 0.355 and 1.57 μm. In this regard, it is promising in the atmosphere surface layer to use sensing wavelengths of 0.355 or 1.57 μm in a wind aerosol lidar. Maximum sensing range of a wind aerosol lidar for a wavelength of 0.355 μm in the transparent earth atmosphere with the receiving lens radius of 150 mm (depending on the laser used) is about 2.5--0.8 km, and for a sensing wavelength of 1.57 μm --- about 1.5 km
Please cite this article as:
Belov M.L., Samsonova A.A., Filimonov P.A., et al. Comparative analysis of aerosol lidar potential possibilities to measure wind speed in different spectral ranges. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2022, no. 1 (138), pp. 49--61. DOI: https://doi.org/10.18698/0236-3933-2022-1-49-61
Литература
[1] Banakh V.A., Smalikho I.N., Falits A.V., et al. Stream Line Doppler lidar measurements of wind speed and direction with the duo-beam method in the surface air layer. Atmos. Ocean. Opt., 2017, vol. 30, no. 6, pp. 581--587. DOI: https://doi.org/10.1134/S1024856017060033
[2] Mylapore A.R., Schwemmer G.K., Prasad C.R., et al. A three-beam aerosol backscatter correlation lidar for three-component wind profiling. Proc. SPIE, 2014, vol. 9080. DOI: https://doi.org/10.1117/12.2053066
[3] Lane S.E., Barlow J.F., Wood C.R. An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas. J. Wind Eng. Ind. Aerodyn., 2013, vol. 119, pp. 53--59. DOI: https://doi.org/10.1016/j.jweia.2013.05.010
[4] Kozintsev V.I., Ivanov S.E., Belov M.L., et al. Laser method of approximate measurement of instantaneous wind velocity and direction. Optika atmosfery i okeana, 2013, vol. 26, no. 5, pp. 381--384 (in Russ.).
[5] Wood C.R., Pauscher L., Ward H.C., et al. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry. Sci. Total Environ., 2013, vol. 442, pp. 527--533. DOI: https://doi.org/10.1016/j.scitotenv.2012.10.061
[6] Savin A.V., Konyaev M.A. Doppler meteo lidar for systems of ensuring vortex flight safety. Meteospektr, 2008, no. 1, pp. 147--152 (in Russ.).
[7] Grishin A.I., Matvienko G.G. Lidar investigations of atmospheric aerosol in the wind shear layers. Optika atmosfery i okeana, 1995, vol. 8, no. 7, pp. 1056--1062 (in Russ.).
[8] Matvienko G.G., Samokhvalov I.V., Rybalko V.S., et al. Rate lidar sounding of wind velocity components. Optika atmosfery i okeana, 1988, vol. 1, no. 2, pp. 68--72 (in Russ.).
[9] Matvienko G.G., Zade G.O., Ferdinandov E.S., et al. Korrelyatsionnye metody lazerno-lokatsionnykh izmereniy skorosti vetra [Correlation methods of laser-radar measurements of wind speed]. Novosibirsk, Nauka Publ., 1985.
[10] Measures R.M. Laser remote sensing. Fundamentals and applications. Wiley, 1984.
[11] Rozhdestvin V.N., ed. Osnovy impul’snoy lazernoy lokatsii [Fundamentals of impulse laser location]. Moscow, BMSTU Publ., 2010.
[12] Ovcherenko N.E., ed. Optiko-elektronnye sistemy ekologicheskogo monitoringa prirodnoy sredy [Optoelectronic systems of environment ecologic monitoring]. Moscow, BMSTU Publ., 2002.
[13] Jursa A.S., ed. Handbook of geophysics and the space environment. Air Force Geophysics Lab., 1985.
[14] Zuev V.E., ed. Signaly i pomekhi v lazernoy lokatsii [Signals and noises in laser location]. Moscow, Radio i svyaz Publ., 1985.
[15] Krekov G.M., Rakhimov R.F. Optiko-lokatsionnaya model’ kontinental’nogo aerozolya [Opto-location model of continental aerosol]. Novosibirsk, Nauka Publ., 1982.
[16] Valley S.B., ed. Handbook of geophysics and space environment. AFCRL, 1965.
[17] Ivanov S.E., Gorodnichev V.A., Belov M.L. Experimentally studied parameters of aerosol inhomogenuities in atmosphere planetary boundary layer at 1.06 μm wavelength. Proc. SPIE, 2019, vol. 11208. DOI: https://doi.org/10.1117/12.2540314
[18] Filimonov P.A., Ivanov S.E., Belov M.L., et al. Monitoring of aerosol inhomogeneities parameters in atmosphere at 355 nm. Proc. SPIE, 2018, vol. 10833L. DOI: https://doi.org/10.1117/12.2503652
[19] Nanosecond lasers. ekspla.com: website. Available at: https://ekspla.com/products/nanosecond-lasers (accessed: 02.05.2021).
[20] CFR 400. ipgphotonics.com: website. Available at: https://www.gophotonics.com/products/lasers/quantel-laser/29-168-cfr-400 (accessed: 02.05.2021).
[21] NLPN-50-10-40. ipgphotonics.com: website. Available at: https://www.ipgphotonics.com/en/products/lasers/mid-ir-hybrid-lasers (accessed: 02.05.2021).
[22] Hamamatsu: company website. Available at: https://www.hamamatsu.com/eu/en/index.html (accessed: 02.05.2021).
[23] Semrock: website. Available at: http://www.semrock.com (accessed: 02.05.2021).
[24] Belov M.L., Kozintsev V.I., Gorodnichev V.A., et al. Raschet yarkosti fona i oslableniya lazernogo izlucheniya v ul’trafioletovoy oblasti spectra [Calculation of background brightness and laser radiation attenuation in ultraviolet spectral range]. Moscow, BMSTU Publ., 2011.