|

The Development of Active Control Method of Thread Mills

Авторы: Andreev Yu.S., Basova T.V. Опубликовано: 02.10.2024
Опубликовано в выпуске: #3(148)/2024  
DOI:

 
Раздел: Приборостроение, метрология и информационно-измерительные приборы и системы | Рубрика: Проектирование и технология приборостроения и радиоэлектронной аппаратуры  
Ключевые слова: automation, cutting tool wear, active control, cutting tool, CNC machine, measurement method

Abstract

This paper considers solution to a problem of ensuring the threaded joints manufacture on the computer numerical control machines and development of the thread mill active control method. This method is realized by introducing the non-contact measurement system, and implementing the developed algorithms adapted to the cutting tool features. The presented method automates tool measurement and reduces the number of thread manufacture defects caused by using the worn or broken tools, as well as by incorrect determination of a zero-point coordinate of the thread mill installed on a computer numerical control machine. Main benefit of the recommended approach lies in the missing requirement to use additional sensors to be installed on the computer numerical control machine, which probably could become relevant for the majority of instrument-making and machine engineering enterprises. Moreover, the proposed method could be used to obtain data required in constructing a forecast model of the cutting tool wear. This would simplify the technological processes planning aimed at reducing the risk of loss of the cutting tool operation condition in a machining step

Please cite this article as:

Andreev Yu.S., Basova T.V. The development of active control method of thread mills. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 3 (148), pp. 91--103. EDN: YZXMCR

Литература

[1] Esteves Junior R.C., Pereira R.B.D., Lauro C.H., et al. Research on the wear mechanisms during the high-speed tapping in 316L stainless steel. Int. J. Adv. Manuf. Technol., 2021, vol. 11, no. 112, pp. 419--436. DOI: https://doi.org/10.1007/s00170-020-06368-6

[2] Araujo A.C., Fromentin G., Poulachon G. Analytical and experimental investigations on thread milling forces in titanium alloy. Int. J. Mach. Tools Manuf., 2013, vol. 67, pp. 28--34. DOI: https://doi.org/10.1016/j.ijmachtools.2012.12.005

[3] Khajavi M.N., Nasernia E., Rostaghi M. Milling tool wear diagnosis by feed motor current signal using an artificial neural network. J. Mech. Sc. Technol., 2016, vol. 30, no. 11, pp. 4869--4875. DOI: https://doi.org/10.1007/s12206-016-1005-9

[4] Brito L.C., da Silva M.B., Duarte M.A.V. Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. J. Intell. Manuf., 2021, vol. 32, no. 1, pp. 127--140. DOI: https://doi.org/10.1007/s10845-020-01564-3

[5] Rao K.V., Murthy B.S.N., Rao N.M. Cutting tool condition monitoring by analyzing surface roughness, work piece vibration and volume of metal removed for AISI 1040 steel in boring. Measurement, 2013, vol. 10, vol. 46, no. 10, pp. 4075--4084. DOI: https://doi.org/10.1016/j.measurement.2013.07.021

[6] Siddhpura A., Paurobally R. A review of flank wear prediction methods for tool condition monitoring in a turning process. Int. J. Adv. Manuf. Technol., 2013, no. 1-4, vol. 65, pp. 371--393. DOI: https://doi.org/10.1007/s00170-012-4177-1

[7] Colantonio L., Equeter L., Dehombreux P., et al. A systematic literature review of cutting tool wear monitoring in turning by using artificial intelligence techniques. Machines, 2021, vol. 9, no. 12, art. 351. DOI: https://doi.org/10.3390/machines9120351

[8] Timofeev D.Y., Khalimonenko A.D., Nacharova M.A. Preliminary local thermal impact as a surface quality assurance factor. Mater. Sc. Forum, 2021, vol. 1031, pp. 125--131. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1031.125

[9] Ong P., Lee W.K., Lau R.J.H. Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. Int. J. Adv. Manuf. Technol., 2019, vol. 104, no. 7, pp. 1369--1379. DOI: https://doi.org/10.1007/s00170-019-04020-6

[10] Paliy V.I., Vantsov S.V. Statistical analysis of the technological processes downtime distribution in manufacturing prototypes of devices on the example of a radio assembly shop. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2023, no. 2 (143), pp. 39--50 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2023-2-39-50

[11] Wei L. Research on tool wear monitoring and turning simulation. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 576, pp. 122--129. DOI: https://doi.org/10.1088/1757-899X/576/1/012016

[12] Ambhore N., Kamble D., Chinchanikar S., et al. Tool condition monitoring system: A review. Mater. Today: Proc., 2015, vol. 2, no. 4-5, pp. 3419--3428. DOI: https://doi.org/10.1016/j.matpr.2015.07.317

[13] Junior M.V., Baptista E.A., Araki L., et al. The role of tool presetting in milling stability uncertainty. Procedia Manuf., 2018, vol. 26, pp. 164--172. DOI: https://doi.org/10.1016/j.promfg.2018.07.023

[14] Panda A., Sahoo A.K., Panigrahi I., et al. Prediction models for on-line cutting tool and machined surface condition monitoring during hard turning considering vibration signal. Mech. Ind., 2020, vol. 21, no. 5, pp. 520--536. DOI: https://doi.org/10.1051/meca/2020067

[15] Richter A. Breaking the beam. Cutting Tool Engineering, 2010, vol. 62, no. 4, pp. 43--47.

[16] Basоva T.V., Andreev Yu.S., Basоva M.V. Method of operational control of a rotary cutting tool оn machine tools with numerical control. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2023, vol. 66, no. 1, pp. 56--65 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2023-66-1-56-65

[17] Basova T.V., Andreev Y.S., Basova M.V. The development of cutting tools active control methodology for numerical control milling machines. UralCon, 2022, pp. 108--112. DOI: https://doi.org/10.1109/UralCon54942.2022.9906666

[18] Serin G., Sener B., Ozbayoglu A.M., et al. Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol., 2020, vol. 109, no. 2, pp. 953--974. DOI: https://doi.org/10.1007/s00170-020-05449-w

[19] Liu C., Li Y., Hua J., et al. Real-time cutting tool state recognition approach based on machining features in NC machining process of complex structural parts. The Int. J. Adv. Manuf. Technol., 2018, vol. 97, no. 2, pp. 229--241. DOI: https://doi.org/10.1007/s00170-018-1916-y

[20] Brandao G.L., Silva P.M.D.C., de Freitas S.A., et al. State of the art on internal thread manufacturing: a review. Int. J. Adv. Manuf. Technol., 2020, vol. 110, no. 11-12, pp. 3445--3465. DOI: https://doi.org/10.1007/s00170-020-06107-x

[21] Dimla Sr D.E., Lister P.M. On-line metal cutting tool condition monitoring. I: force and vibration analyses. Int. J. Mach. Tools Manuf., 2000, vol. 40, no. 5, pp. 739--768. DOI: https://doi.org/10.1016/S0890-6955(99)00084-X

[22] Zhang Y., Zhu K., Duan X., et al. Tool wear estimation and life prognostics in milling: Model extension and generalization. Mech. Syst. Signal Process., 2021, vol. 155, art. 107617. DOI: https://doi.org/10.1016/j.ymssp.2021.107617