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Abstract Keywords 
The solid-state wave gyroscope belongs to the class 
of the so-called Coriolis vibratory gyroscopes. They 
are industrially produced, as a rule, in two versions: 
precise solid-state wave gyroscopes with expensive 
fused quartz resonators, and devices of low accuracy 
with metal resonators. The use of metal for the 
manufacture of a solid-state wave gyroscope resona-
tor for inertial systems of medium and low accuracy 
can significantly simplify the design of the device 
and reduce its cost, however, the low-quality factor 
of the metal resonator and the instability of its dissi-
pative characteristics limit the accuracy characteris-
tics of the solid-state wave gyroscope. The use of 
high-quality precision fused quartz glass resonators 
in such solid-state wave gyroscopes is unacceptable 
because of their high cost. The purpose of the work 
is to study the characteristics of inexpensive quartz 
resonators made from industrially produced fused 
quartz tubes, with the aim of creating a medium-
accuracy solid-state wave gyroscope. Using the 
finite element method, the main types of geometric 
heterogeneities arising from the production of such 
resonators and their influence on their spectral 
characteristics are investigated. The experimental 
results allow us to draw conclusions about the most 
significant defects affecting the performance and 
accuracy of the solid-state wave gyroscopes 
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Introduction. At present, wave solid-state gyroscopes (SSGs) are widely used. 
Their action is based on the precession of elastic standing waves in a thin-walled 
high-quality axisymmetric mechanical resonator under the action of Coriolis 
forces. The rotation of the wave relative to the resonator is proportional to the 
external angular displacement; therefore, by analysing the motion of the wave 
pattern relative to the resonator, the external angular displacement of the SSG is 
calculated. The resonator is the most critical part of the SSG. It determines the 
precision of SSG. Resonators of precision SSG are made of quartz glass on 
precision mechanical equipment [1]. Resonators of low and medium precision 
devices, for the means of the cost reduction, are made of stainless steel [2]. It is 
proposed to use industrial quartz tubes for the manufacture of inexpensive SSG 
resonators in [3–6]. It was demonstrated, that such resonators obtained by simple 
technology have quite sufficient technical characteristics. The appearance of such 
a resonator is shown in Fig. 1, it is a segment of a quartz tube, divided by a 
necking into two parts (an elongated working part and a fixing shank). 
According to the experiment [3], the necking provides good vibration isolation of 
the cylindrical working part from the fixed shank, allowing a simple way to 
obtain resonators with a Q factor of more than 106. 

Fig. 1. High-Q cylindrical resonator SSG made of industrial quartz tube 

At the same time, geometric deviations from the axisymmetric shape of the 
initial quartz tube will entail a deterioration of other parameters of such 
resonators, including one of the most important ones — the difference in its 
eigenfrequencies (frequency splitting). 

The frequency splitting ( f) is the main reason for the random drift of the 
wave pattern in the SSG; therefore, it is minimized already at the stage of reso-
nator cavity shaping. After manufacturing, the resonator is balanced, reducing 
the f to zero. The larger the f value the resonator has after manufacturing, 
the higher is the complexity of its balancing. Since industrial quartz tubes have 
a sufficiently large scatter of geometric dimensions, it is advisable to control 
the geometric dimensions of the tubes used to produce resonators. This will 
generally reduce the complexity and the cost of balancing. 
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In our case, the geometry of ideal tubular resonators could be described well 
by the cylindrical thin-walled shell model, and there are analytical expressions [4] 
for its own vibration forms. It should be noted that all sorts of geometric defects 
require the involvement of computer simulations, which is based on the 
technique of finite elements (FEM). This approach is widely used by various 
authors both to model the dynamics of the hemispheric quartz SSG (the so-called 
wineglass or hemispherical resonator gyroscope, HRG) [7–10], and metal 
cylindrical SSG [11–14]. The FEM method application to the calculation of the 
dynamics of the “hybrid” quartz resonator, which geometry corresponds to the 
common metal SSG with a cylindrical resonator being similar to Innalabs, is 
considered in the [15]. The results of dynamic effects modelling of both ideal and 
imperfect SSG with a resonator in the form of a shell with an arbitrary forming, 
are represented in [16, 17]. Specialised ANSYS, COMSOL, and MATLAB 
computer mathematics systems are most commonly used for the course-
elemental view. 

The dynamics of the SSG type, which is considered in the present work in the 
form of a fused quartz tube was studied using analytical representations mainly. 
And defects modelling was done only in the approximation of annular obstacles 
at the resonator edge [3–5]. 

The purpose of the work is to determine the described design by finite 
element simulation of the natural frequency spectrum of a cylindrical 
resonator in the presence of various shape defects in the original quartz tube 
(unequal wall thickness, barrel-shaped, etc.) and evaluate the allowable values 
of these defects. 

Problem statement. The solution of the problem is to find the eigenfrequen-
cies and 15 harmonic coordinate functions, which are corresponding to them: six 
components of the stress tensor ij, six components of the strain tensor ij, three 
components of the displacement vector ui, that satisfy the three equations of mo-
tion, six relations between stresses and deformations, six relations between de-
formations and displacements under homogeneous boundary conditions. 

The relation between stress and strain is as follows [18]:  
  = D ,  (1) 
where  is the stress vector; D is 6×6 elastic modulus tensor;  is elastic strain 
vector.  

Stress and strain tensors consist of x, y and z normal components and x-y,  
y-z and z-x tangent components. Then for an isotropic body (1) could be 
represented as follows [19] 
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Here E is the Young’s modulus (elastic modulus);  is Poisson’s ratio (transverse 
compression coefficient). 

The equations of motion of an elastic medium are obtained if we equate the 
force of internal stresses  with the product of acceleration u  at the mass per 
unit volume of the body (i.e., its density) .u  Vector form of the equation of 
motion would be as follows: 
 ,u  (3) 

where  is the volumetric density; u is the displacement vector. 
Equations (1) and (3) form a complete system of partial differential equa-

tions for stresses and strains, and the described above boundary conditions 
should also be added to them. 

The equations of motion in displacements are obtained by eliminating the 
component of the stress tensor  ij   from equation (3) using Hooke’s law and the 
relation connecting deformations with displacements: 
 ( , ) 0.tc u r u  (4) 

Here c is elastic stiffness tensor. 
The solution to the equations of motion will be sought in the form 

 ( , ) Re ( )e ,j ti itu r u r  (5) 

where ( )iu r  is only the function of coordinates. Similarly represent the 
components of the deformation and stress.  

We substitute (5) into (4) and taking into account that the external forces 
and boundary conditions in the case of free oscillations are homogeneous, and 
the factor e j t  is reduced, we obtain 

 ( ) ( ) 0,i ikc u r u r  (6) 

where 2.k   
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For certain values of k equation (6) has a nonzero solution. The values  
of (2 )/f  correspond to the eigenfrequencies of the elastic vibrations of the 
resonator, and the functions of  ui determine the eigenmodes of vibration. 

Own modes of vibration have the property of orthogonality. From the 
condition of orthogonality, it follows, in particular, that the frequencies  are 
always real-valued. 

Since ui are defined only up to an arbitrary constant factor, they can be 
normalized arbitrarily. Usually it is taken 

 .m n mn
V

u u dV  (7) 

Here mn  is the Kronecker delta. Relation (7) expresses the condition of 
orthonormalization of the natural vibration modes. 

For an approximate solution of problem (6), the FEM is used. The 
calculations were performed in COMSOL Multiphysics [20]. This is a powerful 
interactive environment for three-dimensional modeling of FEM of a large 
number of scientific and engineering problems based on partial differential 
equations (PDEs). 

During the calculations, the coefficient form of the task of the system of 
elasticity theory PDEs was used. The system allows carrying out various types of 
analysis: stationary and transient analysis; linear and nonlinear analysis; analysis 
of eigenfrequencies. 

When solving the PDE in COMSOL Multiphysics, the software implements 
finite element analysis based on mesh generation that considers the geometric 
configuration of bodies, as well as the required calculation error. 

Interaction with the program is possible in a standard way — through a 
graphical user interface (GUI), or by programming with scripts. In the work, a 
method of interaction through a graphical interface was used. 

The resonator structure, chosen for calculations and analysis of eigenfre-
quencies, is shown in Fig. 2. In modeling, the following geometric dimensions 
were used: D1 = 31 mm; H = (D1 — D2) / 2 = 1.5 mm; L1 = 22.5 mm; L2 = 50 mm; 
L3 = 15 mm; d = 8 mm. 

Results. During the simulation process, the resonator geometry was 
constructed with the following defects in the location and shape of the end 
surface of the resonator: ovality; misalignment of the outer and inner cylindrical 
surfaces; non-perpendicularity of the end of the working part to the axis of the 
cylindrical surface; non-perpendicularity of the fixed end to the axis of the 
cylindrical surface. 
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Fig. 2. The resonator structure 
 
In addition, the following deviations of the cross-sectional profile were 

considered: deviation from rectilinearity of the cylinder axis; conical shape; 
barrel-shaped; bow effect. 

For a resonator with given dimensions and without geometric defects, the 
spectrum of eigenfrequencies was calculated. During the simulation, a finite 
element mesh was set mindful of the design features of the resonator (Fig. 3). The 
calculation results are given below. 

Fig. 3. Three-dimensional model (a) and finite element approximation (b)  
of the resonator with no geometry defects: 

1 is work area; 2 is shank; 3 is necking 
 

Eigenfrequency spectrum calculation results  
for the resonator without geometry defects 

Frequency, Hz: 
   pendulum mode f1  .............................................................  989.7 
   second flexural mode f2  .....................................................  5083.1 
   third flexural mode f3  ........................................................  13921.3 
Frequency splitting, Hz: 
   second flexural mode f2  ..................................................  0 
   third flexural mode f3  .....................................................  0 
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The experimental results obtained are correspond with the theoretical esti-
mates, which are made under the assumption of an ideal cylindrical shell [4, 21]:  
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To find out the degree of influence of the ovality of the cylindrical surface  
of the resonator (Fig. 4 a) on the spectrum of eigenfrequencies and the shape  
of natural oscillations, finite element simulation was performed for the difference 
between the major and minor axis of the ellipse Δl, mm: 0.3; 0.6; 0.9; 1.2; 1.6; 1.9; 
2.2; 2.5. The values of the main parameters calculated for the considered case are 
given in Table 1. Based on the data presented, one could come to the conclusion 
that when one of the semi-axes of the ellipse decreases in the cross section of the 
tube, the eigenfrequencies increase and the degeneracy of the natural oscillation 
modes is eliminated. 

 Fig. 4. Cross sections of the resonator with the ovality of the cylindrical surface (a) 
and misalignment of the outer and inner cylindrical surfaces (b) 

 
Table 1 

The results of calculating the spectrum of eigenfrequencies of the resonator  
with the ovality of the cylindrical surface at various values of the parameter Δl 

Δl, mm f1, Hz f2, Hz Δf2, Hz f3, Hz Δf3, Hz 

0 989.7 5 083.1 0 13 921.3 0 
0.3 999.2 5 184.5 1.5 14 205.3 0.1 
0.6 1 008.6 5 288.6 5.6 14 497.2 0.3 
0.9 1 018.5 5 393.4 13.2 14 790.0 0.9 
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End of the Table 1 

Δl, mm f1, Hz f2, Hz Δf2, Hz f3, Hz Δf3, Hz 

1.2 1 028.3 5 499.5 24.3 15 084.9 1.1 
1.6 1 038.6 5 607.2 39.2 15 384.8 1.9 
1.9 1 049.1 5 716.4 57.8 15 687.4 2.7 
2.2 1 059.4 5 826.7 80.4 15 993.2 5.1 
2.5 1 070.1 5 938.6 107.2 16 303.8 9.0 
 
During simulation the misalignment of the outer and inner cylindrical sur-

faces of the resonator, the displacement parameters Δl, mm, were set (Fig. 4 b): 
0.125; 0.250; 0.375; 0.500; 0.625; 0.750. The results of calculating the spectrum of 
eigenfrequencies of the resonator with misalignment of cylindrical surfaces are 
given in Table 2. 

Table 2 

The results of calculating the spectrum of eigenfrequencies of the resonator  
with misalignment of cylindrical surfaces for various values of the parameter Δl 

Δl, mm f1, Hz f2, Hz Δf2, Hz f3, Hz Δf3, Hz 

0 989.7 5083.1 0 13921.3 0 
0.125 987.3 5078.6 0 13893.0 0.2 
0.250 987.1 5065.0 0.3 13805.7 0.1 
0.375 983.8 5042.3 1.3 13658.6 1.0 
0.500 979.2 5009.1 4.3 13447.1 0.7 
0.625 973.5 4965.1 12.1 13167.5 0.4 
 
According to the obtained simulation results, an increase in misalignment of 

the inner and outer edging circles leads to a decrease in the frequencies observed 
in the spectrum with maintenance of the oscillating degrees of freedom. The 
emergent different frequency is associated with the appearance of anisotropy of 
the transverse stiffness of the resonator. In this regard, there are significant 
distortions of the modes of transverse oscillations (including the first, second and 
the third ones). Significant distortions in the shape of such oscillations are 
already apparent when misalignment is 17 % of the resonator wall thickness. 

The calculation of the frequency characteristics of the resonator with the 
non-perpendicularity of the end surface of the working area (Fig. 5 a) to the axis 
of the cylindrical surface was carried out with the values of the angle of 
inclination of the end surface Δ , deg: 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0.  
The results of calculating the spectrum of eigenfrequencies of a resonator with a 
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Fig. 5. A resonator with a non-perpendicular end surface of the working part (a),  
with non-perpendicularity of the end surface of the shank (b) and with a deviation 

from rectilinearity of the axis of the cylinder (c) 
 

non-perpendicular end surface of the working region to the axis of the cylindrical 
surface are given in Table 3. 

 
Table 3 

The results of calculating the spectrum of eigenfrequencies of the resonator  
with a non-perpendicular end surface of the working area to the axis  

of the cylindrical surface for various values of the parameter Δ  

Δ , deg f1, Hz f2, Hz Δf2, Hz f3, Hz Δf3, Hz 

0 989.7 5083.1 0 13921.3 0 
0.5 992.8 5084.2 0.1 13922.2 0.1 
1.0 995.9 5085.4 0.1 13923.1 0.2 
1.5 999.0 5086.6 0.1 13923.6 0.1 
2.0 1002.2 5087.7 0.1 13923.6 0.2 
2.5 1005.3 5088.9 0.1 13923.5 0.1 
3.0 1008.5 5090.0 0.1 13922.9 0.3 
3.5 1011.7 5091.0 0.1 13921.9 0.2 
4.0 1014.9 5092.0 0.1 13920.4 0.3 

 
In accordance with the above results, for the cases of the first and second 

modes of oscillation, with an increase in the parameter Δφ, the values of the 
eigenfrequencies increase almost linearly, and the resulting frequency difference 
is tenths of a hertz. 
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We also investigated in the present work the case with the non-
perpendicularity of the end surface of the mounting shank to the cylinder axis 
(Fig. 5 b). It was found out that the occurrence of different frequencies and 
distortion of the forms of oscillations does not occur. 

To establish the effect of a resonator geometry defect in the form of a 
deviation from the rectilinearity of the cylinder axis, a three-dimensional 
geometric model of the resonator was constructed with a bend of the axis of the 
cylindrical surface along a circular arc (Fig. 5 c) with a segment height Δl, mm: 
0.25; 0.50; 0.75; 1.00; 1.25; 1.50. The results of calculating the spectrum of the 
eigenfrequencies of the resonator with a deviation from the rectilinearity of the 
axis of the cylinder are given in Table 4. 

Table 4 

The results of calculating the spectrum of eigenfrequencies  
of the resonator with deviation from rectilinearity of the cylinder axis  

for various values of the parameter Δl 

Δl, mm f1, Hz f2, Hz Δf2, Hz f3, Hz Δf3, Hz 

0 989.7 5083.1 0 13921.3 0 
0.25 987.5 5085.5 0.7 13934.8 0.2 
0.50 987.2 5085.6 0.7 13933.3 0.4 
0.75 986.5 5085.7 0.8 13932.5 1.6 
1.00 985.7 5085.9 1.1 13931.8 0.9 
1.25 983.9 5086.3 1.1 13931.4 0.8 
1.50 981.6 5086.9 1.1 13929.1 1.1 

As per to the data obtained, resulting the axis bending of the cylindrical 
surface of the resonator, an increase in the natural frequencies occurs relative to 
the values calculated for its distortionless shape. In addition, a small frequency 
difference appears for initially degenerate modes of oscillations. 

Considering a cone-shaped axisymmetric defect in the geometry of the 
resonator, one could distinguish cases of an increase in the radius of the 
cylindrical surface of the resonator to the end surface and its decrease (expanding 
and narrowing truncated cone, Fig. 6). The parameter Δl, which determines the 
taper of the resonator as the difference between the larger and smaller radii on 
the end surfaces, mm: 0.62; 0.93; 1.24; 1.55; 1.86. The calculated values of the 
eigenfrequencies of a resonator with a geometry defect in the form of an 
expanding and tapering truncated cone are given in Table 5. 

According to the results of the calculation, a linear dependence of the 
eigenfrequencies on the change in the Δl parameter is detected, and in case of a 



M.A. Basarab, B.S. Lunin, E.A. Chumankin, A.V. Yurin 

62  ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2020. № 3 

Fig. 6. Conical cavity shape defect: 
a, b are expanding and tapering truncated cone 

 
defect in the form of an expanding truncated cone, the eigenfrequencies decrease, 
and in the case of a defect in the form of a tapering one, they increase. The 
change in eigenfrequencies relative to the values obtained with undistorted 
resonator geometry is very significant (~10 % at the maximum value of Δl). Thus, 
significant values of the cone of the resonator lead to noticeable changes in its 
frequency characteristics without splitting the eigenfrequencies. 

Table 5 

The results of calculating the spectrum of natural frequencies of the resonator  
with a conical defect at various values of the parameter Δl 

Δl, mm f1, Hz f2, Hz f3, Hz 

0 989.7 / 989.7 5083.1 / 5083.1 13921.3 / 13921.3 
0.62 949.0 / 1033.3 4925.1 / 5264.6 13499.8 / 14437.4 
0.93 930.5 / 1054.8 4847.1 / 5356.4 13282.7 / 14689.9 
1.24 913.1 / 1077.1 4771.3 / 5451.8 13071.9 / 14950.9 
1.55 895.8 / 1100.1 4698.2 / 5550.3 12868.8 / 15219.7 
1.86 878.9 / 1123.8 4627.3 / 5652.1 12670.5 / 15496.0 

The numerator shows the values for the geometry defect in the form of an expand-
ing truncated cone, and the denominator shows the values for the tapering one. 

Axisymmetric defects such as barrel and bow resonator geometry are 
considered (Fig. 7). For modeling, the parameter Δl, mm: 0.25; 0.50; 0.75; 1.00; 
1.25; 1.50; 2.00. The calculated values of the eigenfrequencies of a resonator with 
a bow and barrel-shaped geometry defects are shown in Table 6. 

The simulation results show an almost linear dependence of the eigenfre-
quencies on a change in the Δl parameter without the occurrence of a differ-
ence in eigenfrequencies. With a barrel-shaped defect in the geometry of the 
resonator, the decrease in the natural frequencies occurs, and with a bow-
shaped defect — the increase occurs. In addition, in the same way as in the 
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Fig. 7. Resonators with barrel (a) and bow (b) geometry defects 
 

case of a conical defect in the geometry of the resonator, significant changes in 
the eigenfrequencies are observed for barrel-shaped and saddle-shaped defects 
in comparison with their values for undistorted resonator geometry (more 
than 10 % at the maximum value of Δl). 

Table 6 

The results of calculating the spectrum of eigenfrequencies of the resonator  
with geometry defects at various values of the parameter Δl 

Δl, mm f1, Hz f2, Hz f3, Hz 
0 989.7 / 989.7 5083.1 / 5083.1 13921.3 / 13921.3 

0.25 971.1 / 1003.3 5020.8 / 5150.3 13734.4 / 14121.3 
0.50 958.0 / 1017.1 4959.7 / 5222.2 13539.8 / 14326.9 
0.75 945.0 / 1031.0 4901.8 / 5297.7 13351.0 / 14531.9 
1.00 932.5 / 1044.9 4847.0 / 5377.5 13168.9 / 14735.7 
1.25 918.6 / 1059.4 4794.6 / 5461.9 12993.4 / 14937.6 
1.50 904.7 / 1073.6 4745.1 / 5550.9 12825.5 / 15135.8 
2.00 877.7 / 1102.5 4653.5 / 5743.8 12512.5 / 15516.2 
The numerator shows values for a resonator with a barrel-shaped geometry defect, 

and the denominator shows values for a resonator with a bow-shaped geometry defect. 
 
Conclusion. Based on the data obtained, one could come to the conclusion 

that the greatest influence on the different frequencies of the resonator made of 
industrial fused quartz tube is exerted by the ovality of its cross section, 
misalignment of the external and internal cylindrical surfaces and deviation from 
the straightness of the tube axis. Selecting tubes according to these parameters, 
one could significantly simplify the procedure for balancing the resonator. The 
non-perpendicularity of the end surfaces of both the working part and the shank 
of the resonator affects the frequency split very weakly, and the influence of 
axisymmetric defects in the geometry of the pipe (conicity, barrel and bow shape) 
could be neglected. 

Translated by K. Zykova 
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