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Abstract Keywords 
The paper deals with the formulation of a mathe-
matical model to study a dynamics interaction of a 
three-layered channel wall with a pulsating viscous 
fluid layer in a channel. The narrow channel 
formed by two parallel walls was considered. The 
lower channel wall was a three-layered plate with a 
compressible core, and the upper one was absolute-
ly rigid. The face sheets of the three-layered plate 
satisfied Kirchhoff’s hypotheses. The plate core was 
considered rigid taking into account its compres-
sion in the transverse direction. Plate deformations 
were assumed to be small. The continuity condi-
tions of displacements are satisfied at the layers’ 
boundaries of the three-layered plate. The oscilla-
tions of the three-layered channel wall occurred 
under the action of a given law of pressure pulsa-
tion at the channel edges. The dynamics of the 
viscous incompressible fluid layer within the 
framework of a creeping motion was considered. 
The formulated mathematical model consisted  
of the dynamics equations of the three-layered plate 
with compressible core, Navier — Stokes equations, 
and the continuity equation. The boundary condi-
tions of the model were the conditions at the plate 
edges, the no-slip conditions at the channel walls 
and the conditions for pressure at the channel edg-
es. The steady-state harmonic oscillations were 
investigated and longitudinal displacements and 
deflections of the plate face sheets were determined. 

Modeling, oscillations, hydroelastic-
ity, three-layered plate, compressi-
ble core, viscous liquid 
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Frequency-dependent distribution functions of 
amplitudes of plate layers displacements were in-
troduced. These functions allow us to investigate 
the dynamic response of the channel wall and the 
fluid pressure change in the channel. The elaborat-
ed model can be used for the evolution of non-
destructive testing of elastic three-layered elements 
contacting with a viscous fluid layer and being part 
of the lubrication, damping or cooling systems of 
modern instruments and units 
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Introduction. Modeling the interaction of elastic elements of structures with a 
fluid is of great importance for the development of instrument making. For 
example, in one of the first papers [1], in which free vibrations of a circular plate 
in contact with water were considered, its author H. Lamb noted that this study is 
extremely important for transmitting signals underwater. Using Rayleigh strain-
energy method, he obtained expressions for the plate’s oscillation frequencies. 
Further development of this issue was carried out in [2] based on of the 
formulation and solution of the hydroelasticity problem in joint consideration of 
the equations of motion of an elastic element and fluid. In these works, autors 
relied on the contact of one plate surface with an unlimited volume of an ideal 
incompressible fluid, and it was shown that oscillation is damped due to the 
conversion of energy to wave formation in a liquid, and the effect of increasing 
inertia, estimated by the added mass, is observed, resulting in a decrease in 
vibration frequencies. Further studies on this issue are aimed at studying the 
influence of related factors. For example, the study of the attached masses of a 
fluid, which take into account its inertial properties, with oscillations of plates of 
different shapes and with various methods of their fixing was performed in [3]. 
In [4], free vibrations of a circular plate on the free surface of an ideal non-
compressible fluid, the volume of which is limited by a rigid cylindrical wall and 
bottom, were investigated. A similar problem with the immersion of a plate 
under the free surface of an ideal fluid was considered in [5]. The problem of 
chaotic oscillations of a plate that is in contact on both sides with the flow of an 
ideal fluid is considered in [6]. Mathematical models for the study of the 
dynamics of elastic elements of pressure sensors and vibration devices based on 
the formulation of the problem of hydroelasticity of a plate interacting with an 
ideal fluid were considered in [7, 8]. In [9], a model was proposed for 
determining the width of the contact zone between solid surfaces and a thin-
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walled cooling channel, having a flat-oval section, when it is hydroelastic 
deformed under the influence of internal static pressure.  

At the same time, studies of vibrations of elastic elements of structures 
interacting with a viscous fluid are extremely important, since viscosity 
determines the damping properties in an oscillatory system. For example,  
in [10, 11], the interaction of a viscous fluid with the structural elements of 
gyroscopic devices was considered and the effect of this interaction on the 
vibration resistance and accuracy of devices was shown. In [12], the study [1] was 
generalized for the case of taking into account the viscosity of the fluid. 
Hydroelastic vibrations of the elastic elements of the vibratory machine 
interacting with a layer of a viscous fluid are considered in [13]. The problem of 
oscillations of a cantilever-fixed beam immersed in an unlimited volume of a 
viscous fluid was solved in [14]. A similar problem for a piezoelectric beam in a 
viscous fluid flow was studied in [15]. The transverse oscillations of two coaxial 
disks interacting with a layer of a viscous incompressible fluid between them are 
studied in [16].  

In connection with the development of aerospace technology, the three-
layered structural elements in the form of beams and plates are becoming more 
widely used in modern aggregate instrument making. These elements have the 
necessary rigidity and low weight, and protect against aggressive effects 
(temperature, radiation, etc.). Approaches to the study of their statics and 
dynamics are well developed and presented, for example, in the review part of the 
monograph [17]. However, studies on the simulation of their oscillations in the 
interaction with the liquid are not enough. The oscillations of composite plates 
interacting with an ideal liquid were investigated in [18]. In [19−22], vibrations  
of three-layered beams and plates prossessing an incompressible core and 
interacting with a viscous fluid were studied. In this paper, a mathematical model 
is proposed for studying the longitudinal and bending vibrations of a three-
layered channel wall having a compressible core and interacting with a pulsating 
layer of viscous fluid, taking into account normal and tangential stresses on  
its side.  

Formulation of the problem. Consider a narrow channel formed by two 
parallel walls, the bottom wall of which is a three-layered plate with compressible 
filler (Figure). The plate is simply supported on the ends, the thickness of its 
outer bearing layers are h1 and h2, the thickness of the core is 2c. We (or let us) 
associate the Cartesian coordinate system xyz with the middle plane of the core in 
the undisturbed state. The upper wall of the channel is rigid. We assume the size 
of the channel in terms of 2l × b and assume b  2l, that is, we consider the 
plane problem. The distance between the channel walls in the undisturbed state is 
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h0 and 2l  h0. The channel is filled with a viscous incompressible fluid, the 
pressure in which pulses due to the harmonic law of pressure pulsation given at 
the ends p* = p0 + pmsin ( t). Here p0 is constantly pressure level, pm is amplitude 
of pressure pulsation,  is frequency, t is time. The elastic movement of the plate 
is much less than h0. We investigate the steady-state oscillations since the 
viscosity of the fluid cause’s considerable frictional forces in the channel, which 
leads to a rapid decay of transients.  

A narrow channel, the bottom wall of which is a three-layered plate:  
1, 2 are upper and lower bearing layers; 3 is core 

 
The plate consists of upper and lower bearing layers, which perceive the 

main loads, and core, ensuring their joint work as a single package. We assume 
[17] that the bearing layers are isotropic, incompressible in the transverse 
direction, and satisfy the Kirchhoff conjectures. The core is considered hard 
given its compression, the exact relations of the theory of elasticity hold for it, 
and the dependence of the displacements of its points on the transverse 
coordinate z appears linear. The deformations are assumed to be small, and at the 
boundaries of the layers of the plate, the conditions for the continuity of their 
displacements are satisfied. For the above assumptions, the stress-deformable 
state of the plate is fully described by the longitudinal displacements and 
deflections of the middle planes of its bearing layers, and the equations of its 
dynamics are as follows [17]:  

 

2 21 2 1
1 1 1 1 2 4 5 22 2

3 32 1 2
3 6 73 3

2 21 2 1
2 1 1 1 2 5 9 32 2

3 32 1 2
2 6 73 3

2 ;

2 0;

zx
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3 3 2 21 2 1 2 1 2
3 17 10 6 6 11 123 3 2 2

4 41 2
15 16 8 1 8 2 14 4

3 3 2 21 2 1 2 1 2
4 18 19 7 7 12 143 3 2 2

4 41 2
16 134 4

2

12 ;
2

2

zx
zz
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x x x x x x

w w qa a a w a w q h
xx x

u u u u w wF a a a a a a
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w wa a
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Here u1 and u2 are the elastic longitudinal displacements of the upper and 
lower bearing layers of the plate, w1 and w2 are the deflections of the upper and 
lower bearing layers of the plate, qzz, qzx are the normal and shear stresses 
acting on the upper supporting layer of the plate from the liquid side, these 
stresses are written as 

 
1 1

1 1

at ;

2 at ,

z x
zх

z
zz

u uq z c h w
x z

uq p z c h w
z

   (2) 

where ρ, ν are the density and kinematic viscosity of a fluid, ux, uz are the 
projections of the velocity vector of the fluid on the coordinate axes, p is the fluid 
pressure, ρk is the material density of the k-th plate layer, Gk, Kk are the shear and 

volume strain moduli of the k-th plate layer, 4 ,
3k kkK K G  

4 .
3k k kK K G  

In addition, the following notation has been introduced: 
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The boundary conditions of equations (1) are 

 
2

2 0k k
k

u ww
x x

 at ,x l   k = 1, 2. (3) 

In narrow channels and slots for modeling the dynamics of a viscous fluid, 
creeping motion [23] can be considered and the equations of motion of the fluid 
can be written as 

  
2 2

2 2
1 x xp u u

x x z
;  

2 2

2 2
1 ;z zp u u

z x z
 0.x zu u

x z
  (4) 



E.D. Grushenkova,  L.I. Mogilevich, V.S. Popov, A.V. Khristoforova  

10  ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 6 

Equations (4) are supplemented by the boundary conditions of fluid 
adhesion on an absolutely solid wall and the upper bearing layer of the plate 

 
1 0

1 1
1 1

0, 0 at ,

, at ,

x z

x z

u u z c h h
u wu u z c h w
t t

   (5)  

and boundary conditions of coincidence of pressure in a fluid with a given 
pressure in the end sections of the channel 

 *0p p p  at x l . (6) 

Determination of the dynamic response of the three-layer channel wall. 
We introduce the following dimensionless variables: 

 ,t  ,x
l

 1

0
,

z c h
h

 1
0

,x m
lu w U

h
  

 1 ,z mu w U  
21*
20 0

,mw lp p P
h h

 (7) 

and given the equations (5) and boundary conditions (6), (7), we obtain 

 

2 2 2
0

2 2

2 2 2 2
0 0

2 2

;

;

0;

U UP h
l

U UP h h
l l

U U

   (8) 

 0;U  0U  at 1;  0 1 1

1
;m

m

h u UU
w

 

 1WU  at 1 1

0
;mw W

h
 (9) 

 0P  at 1. 

Here, it was assumed, where 1 1 1 ( , ),mu u U  1 1 1 ( , ),mw w W  where 
u1m, w1m are the amplitudes of the longitudinal displacement and deflection of 
the upper bearing layer. 

In the considered formulation 1 1 1m mu w , and parameters 0 1h l , 

1 0 1,mw h  i.e., with the given parameters in (8) and (9), can be omitted, as a 
result we have 
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2

2 ;
UP  0;P  0;

U U
 (10) 

 0,U  0U  at 1;  0,U  1WU  at 0;   (11) 

 0P  at 1. (12) 

Taking into account the comments made earlier, the stresses zzq  and zхq  in 
the variables (8) are written as 

 
21 0 0

* 2 31 0 0

( ) ;

( ) .

zх m

zz m

q w l h U

q p w l h P
  (13) 

Solving problem (11)−(13), we find that  
1 1

1 1

0 1 0
12 6 1W WP d d d d ; 

1
1 1

0 0 1 0
6 3

U W Wd d d ;  (14) 

 1 1 1

0
6

Uh h W
l l

. 

The solution of equations (1) is represented as 

 0

0

( ) cos (2 1) 2 ;

cos (2 1) 2 , 1, 2.

nk k
n

k
n

u T t n

w n k
  (15) 

Substituting (15) into (14) and decomposing the pressure *p  in a series of 
cos (2 1) 2 ,n  we obtain 

21 32
0 1*

3 2
0 0

4 ( 1) 2 1212 cos ;
(2 1) (2 1) 2

n n
zz

n

nh dRl xq p
n n dt lh l

 

 1
2

0 0

2 126 sin ;
(2 1) 2

n
zx

n

ndRl xq
n dt lh

  (16) 

2
0 1 1

1 3
0 0

2 11 1 6 cos .
2 2 2

n
zx

n

ndRq h h l xh
x l l dt lh
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From expressions (16) it follows that 1 1,
2

zx
zz

h q q
x

 i.e., the term 

1
2

zxh q
x

 in (1) can be neglected in compression with qzz. Then, substituting (15), 

(16) in (1), and equating the terms in the resulting system with the same 
trigonometric functions, we proceed to the system of ordinary differential 
equations in time, which includes two homogeneous algebraic equations. Using 
them, we will find a connection 2 ,nT  2

nR  through 1 ,nT  1
nR :  

 
24 41 44 21 24 43 44 23 22 44 24 422 1 1

42 21 22 41 42 23 22 43 22 44 24 422 1 1

;

.

n n n

n n n

T T b b b b R b b b b b b b b

R T b b b b R b b b b b b b b
 (17) 

Further, given that for harmonic steady-state oscillations 
2 2 2

1 1 ,n nd R dt R  we finally get 

 

1* * 111 131 1

1
1* * *31 331 1

2 0;

4 ( 1)
2 .

(2 1)

n
n n n

n n
n n n

dRb T b R K
dt

d R
b T b R K p

d t n

   (18) 

The following notation is introduced here: 

 22 44 24 42;b b b b
*11 11 12 24 41 44 21 14 42 21 22 41 ;b b b b b b b b b b b b  

 *13 12 24 43 44 23 13 14 42 23 22 43 ;b b b b b b b b b b b b  

 *31 31 32 24 41 44 21 34 42 21 22 41 ;b b b b b b b b b b b b  

 *33 32 24 43 44 23 33 34 42 23 22 43 ;b b b b b b b b b b b b  

 
22

3
0

22 12 ;
(2 1)n

lK
nh
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2
0

22 6 ;
(2 1)n

lK
nh

 

  
2 2

2 211 1 4 1 12 1 5 8
2 1 2 1

; ;
2 2

n n
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l l
  

 
2

213 2 6 5
2 1 2 12 1 2 2 ;

2 2 2
n nnb a a m

l l l
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2
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l
  

 
2
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;
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2
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;
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2
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2
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2 2 ;
2 2
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l l
 

 
2
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2 2
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l l
 

 
2 4 2
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;
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n n n
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2
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2 2
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2
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2 2 ;
2 2
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From (18) we have  

 

11 * *33 131 *
1* * * * *

31 11 31 11 31
* 113 1

1 1* *11 11

4 ( 1)2 2 1 ;
(2 1)

2 .

nn
n n n

n
nn n

dR K K b bR p
dt nb b b b b

dRb KT R
dtb b

  (19) 

Given the linearity (19) and representing 0
1 1 1 ,n n nR R R  0

1 1 1 ,n n nT T T  
where the superscript 0 corresponds to a static solution, we have 

 

1
0 01

1 0

* *13 130 0 01 1 * * 111 110 0

4 ( 1) 1 ;
(2 1)

4 ( 1) 1
(2 1)

n
n

n
n n

R p
n d

b bT R p
n db b

 (20) 

and for harmonic oscillations we find that 

 

1
*

1 2 2 2
1 2

* 2 1 213 *
1 2 * 2 2 2 * 211 111 2

4 ( 1) 1 ;
(2 1)

(2 )4 ( 1)
,

(2 1)

n
n i i tm

n nn i i i tm

R e p e
n d d

b K
T e e p e

n d b d b

 (21) 

where * * * *33 31 13 111 ;d b b b b  * 1 *31 112 2 2 ;n nd K b K b  2 1tg ;d d  
1 *13tg 2 .nK b  

Taking into account (20) and (21) in (15), we obtain expressions for the 
deflection and longitudinal displacement of the first bearing layer of the plate 
during its oscillations: 

 

1
01

10 0

* 1 1

*13
01 * 1110 0

* 1 1

4 ( 1) 2 11 cos
(2 1) 2

( , ) sin( );

4 ( 1) 2 11 sin
(2 1) 2

( , ) sin( ).

n

n

m w w

n

n

m u u

n
w p x

n d l

p x t

nbu p x
n d lb

p x t

 (22) 

Here  

 2 2
1( , ) ;w p px E F    2 2

1( , ) ;u p px A B  
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1

1
2 2 2

0 1 2

4 ( 1) 2 1
cos ;

(2 1) 2

n

p
n

ndE x
n ld d

  

 

1
2

2 2 2
0 1 2

4 ( 1) 2 1
cos ;

(2 1) 2

n
p

m

ndF x
n ld d  

 
* 1131 2

2 2 2 * * 2 2 211 110 1 2 1 2

4 ( 1) 2 12 sin ;
(2 1) 2

n
n

p
n

nd db KA x
n ld d b b d d

 

 
1 *131 2

2 2 2 * * 2 2 211 110 1 2 1 2

4 ( 1) 2 12 sin ;
(2 1) 2

n
n

p
n

nd dK bB x
n ld d b b d d

 

 1 arctg ,w p pF E  1 arctg .u p pB A  

The functions introduced into consideration 1( , )w x  and 1( , )u x  are 
the frequency-dependent distribution functions of the amplitudes of the 
deflection and the longitudinal movement of the first bearing layer along the 
channel. Note that using (17), we can write similar functions for deflection and 
longitudinal movement of the second bearing layer of plate.  

Conclusion. A mathematical model is proposed for modeling bending and 
longitudinal vibrations of the channel wall as a three-layered plate possessing 
compressible core and interacting with a pulsating layer of a viscous 
incompressible fluid. The expressions for the elastic displacements of the layers of 
the plate, which completely determine its intensely deformed state, are 
determined. Frequency-dependent deflection amplitude distribution functions 
are constructed 1 ( , )w x  and longitudinal movement 1 ( , )u x  the first 
bearing layer, allowing to analyze the dynamic response of the channel wall. In 
particular, these functions with a fixed value of the longitudinal coordinate 
represent the amplitude-frequency characteristics of the corresponding cross-
section of the channel wall. It can be noted that the proposed functions allow us 
to investigate hydroelastic vibrations of the channel wall and determine the 
distribution of fluid pressure in the channel. For example, they can be used to 
determine its resonant vibration frequencies and the corresponding amplitudes 
of longitudinal displacements, deflections of the bearing layers of the plate and 
pressure in the liquid. In addition, the developed model can be used for the 
further development of methods for non-destructive monitoring of the state of 
three-layered walls of channels filled with a pulsating viscous fluid. In particular, 
if, with the well-known harmonic law of pressure pulsation at the ends of the 
channel, in some fixed section, the amplitude-frequency characteristics of the 
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deflection and longitudinal displacement of its second bearing layer are 
experimentally determined, then using relation (17), we can recalculate the 
characteristics the first bearing layer of the channel. Comparing the result 
obtained with the previously known reference result, one can judge the state of 
the channel wall. Thus, the developed mathematical model can be used both for 
studying the dynamic response of three-layered channel walls, in various devices 
and assemblies and for developing non-destructive testing technologies for three-
layered structural elements in contact with fluid layers in lubrication and 
damping systems or cooling according to the parameters of forced oscillations of 
their bearing layers.  

Translated by K. Zykova 
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