В. М. Терешков

ПРЯМОЙ МЕТОД ОЦЕНИВАНИЯ ПОГРЕШНОСТЕЙ ДАТЧИКОВ БЕСПЛАТФОРМЕННЫХ ИНС

Предложен прямой метод оценивания погрешностей датчиков бесплатформенной инерциальной навигационной системы на подвижном основании. По сравнению с традиционно используемым фильтром Калмана прямой метод требует меньшего количества априорной информации и обеспечивает более высокую надежность оценивания. Кроме того, он позволяет получать оценки не в итерационной, а в замкнутой форме, что уменьшает или вовсе исключает переходные процессы. Метод рассмотрен применительно к задаче полунатурного моделирования инерциальных навигационных систем и апробирован в ходе испытаний инерциального измерительного блока среднего класса точности.

E-mail: VTereshkov@mail.ru

Ключевые слова: инерциальные навигационные системы, фильтр Калмана, погрешности датчиков.

Основными источниками погрешностей выходной информации бесплатформенных инерциальных навигационных систем (ИНС) являются ошибки показаний чувствительных элементов - гироскопов и акселерометров. Нестабильности их смещений нуля приводят к возникновению колебаний вычисляемого образа гиростабилизированной платформы ИНС относительно плоскости горизонта, что, в свою очередь, приводит к колебательному изменению погрешностей системы по скорости и координатам [1, 2]. Существенно, что значения этих нестабильностей при движении объекта, на котором установлена ИНС, могут отличаться от значений, измеренных на покоящемся основании. Это обусловлено ускорениями и вибрацией объекта при его движении, а также различными факторами, не учитываемыми напрямую в моделях ошибок датчиков ИНС, но влияющими на приведенные (эквивалентные) смещения нуля гироскопов и акселерометров [3]. В то же время для адекватного моделирования поведения ИНС желательно знать именно те значения погрешностей датчиков, которые характерны для эксплуатации ИНС на движущемся носителе.

В настоящее время наибольшее распространение получил способ оценивания ошибок чувствительных элементов ИНС, основанный на алгоритме фильтра Калмана [4]. В качестве модели динамики системы выступают уравнения ошибок ИНС по координатам, скорости и углам отклонения вычисляемого образа платформы от его идеального положения. Измеряемыми величинами на входе фильтра служат, как

правило, рассогласования показаний по координатам и скорости между ИНС и спутниковой навигационной системой (СНС) [2, 5]. Следует, однако, иметь в виду, что применение фильтра Калмана сопряжено с некоторыми трудностями. Во-первых, хотя фильтр Калмана и обладает свойством оптимальности оценивания в среднеквадратическом смысле, но эта оптимальность достигается лишь при верном задании интенсивностей входных и измерительных шумов. Для входных шумов, имеющих во многом условную, субъективную природу [2], это не всегда возможно. Во-вторых, для оценивания погрешностей датчиков ИНС необходима возможность наблюдения за ними по данным измерений. Например, смещения нуля акселерометров бесплатформенных ИНС наблюдаемы лишь при изменении углов ориентации носителя, а для платформенных и вовсе не наблюдаемы. Однако многие авторы либо игнорируют вопрос об их наблюдаемости [5-7], либо, констатируя слабую наблюдаемость, исключают их из вектора величин, подлежащих оцениванию [8]. В-третьих, оценки, получаемые фильтром Калмана, содержат переходные процессы, длительность которых может достигать десятков минут. Это свойство алгоритма отражает его итерационную природу.

В настоящей статье предлагается прямой метод оценивания ошибок датчиков ИНС, принципиально позволяющий получать оценки не в итерационной, а в замкнутой форме. Это ускоряет или вовсе исключает переходные процессы. Кроме того, прямой метод требует меньшего числа настраиваемых параметров, чем фильтр Калмана, и проще в использовании.

Уравнения прямого метода оценивания. Рассмотрим бесплатформенную ИНС, погрешности которой демпфируются с использованием внешней информации о скорости движения носителя. С этой целью в горизонтальные каналы ИНС вводится по два сигнала отрицательной обратной связи по ошибке: сигнал $f_{E,N}^C = -K_1 \delta V_{E,N} - \mathbf{B}$ блок расчета скоростей, сигнал $\omega_{E,N}^C = \mp K_2 \delta V_{N,E} - \mathbf{B}$ блок управления вычисляемым образом платформы [2]. Здесь δV_E , δV_N — погрешности ИНС по скорости вдоль восточного и северного направлений. Структурная схема ошибок такой системы (для восточного ее канала) приведена на рис. 1. Соответствующие схеме уравнения ошибок имеют вид

$$\begin{split} \delta \dot{V}_E &= -g \Phi_N + a_N \Phi_{UP} + \delta f_E - K_1 \delta V_E; \\ \delta \dot{V}_N &= g \Phi_E - a_E \Phi_{UP} + \delta f_N - K_1 \delta V_N; \\ \dot{\Phi}_N &= \frac{\delta V_E}{R} - \delta \omega_N + K_2 \delta V_E; \\ \dot{\Phi}_E &= -\frac{\delta V_N}{R} - \delta \omega_E - K_2 \delta V_N, \end{split}$$

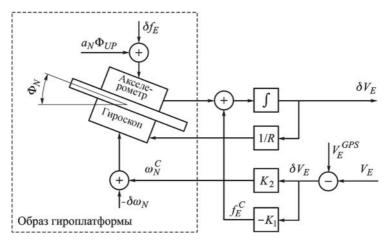


Рис. 1. Структурная схема погрешностей демпфируемой ИНС (восточный канал)

где Φ_E , Φ_N , Φ_{UP} — малые углы отклонения вычисляемого образа платформы от идеального положения, отсчитываемые вокруг восточной, северной и вертикальной осей географического трехгранника соответственно; δf_E , δf_N , $\delta \omega_E$, $\delta \omega_N$ — смещения нуля акселерометров и гироскопов в проекциях на географический трехгранник; R — радиус Земли; a_E , a_N — горизонтальные ускорения носителя.

Отсюда нетрудно получить уравнения, описывающие динамику изменения погрешностей по скорости для демпфируемой ИНС:

$$\begin{split} \delta \ddot{V}_E + K_1 \delta \dot{V}_E + \left(\frac{g}{R} + K_2 g\right) \delta V_E &= g \delta \omega_N + \dot{a}_N \Phi_{UP} + \delta \dot{f}_E; \\ \delta \ddot{V}_N + K_1 \delta \dot{V}_N + \left(\frac{g}{R} + K_2 g\right) \delta V_N &= -g \delta \omega_E - \dot{a}_E \Phi_{UP} + \delta \dot{f}_N. \end{split}$$

Учитывая, что $K_2 g \delta V_E = g \omega_N^C$, $K_2 g \delta V_N = -g \omega_E^C$ и $K_2 \gg 1/R$, в квазиустановившемся режиме получаем

$$g\omega_E^C = g\delta\omega_E + \dot{a}_E\Phi_{UP} - \delta\dot{f}_N;$$

$$g\omega_N^C = g\delta\omega_N + \dot{a}_N\Phi_{UP} + \delta\dot{f}_E$$

или, после интегрирования на некотором интервале времени Δt ,

$$g \int_{t}^{t+\Delta t} \omega_{E}^{C} dt = g \int_{t}^{t+\Delta t} \delta \omega_{E} dt + \Delta a_{E} \Phi_{UP} - \Delta \delta f_{N};$$

$$g \int_{t}^{t+\Delta t} \omega_{N}^{C} dt = g \int_{t}^{t+\Delta t} \delta \omega_{N} dt + \Delta a_{N} \Phi_{UP} + \Delta \delta f_{E}.$$
(1)

Соотношения (1) свидетельствуют о том, что в управляющих угловых скоростях ω_E^C , ω_N^C , приложенных к вычисляемому образу платформы

демпфируемой ИНС, содержится информация о ключевых источниках погрешностей автономной ИНС: смещениях нуля гироскопов и акселерометров, а также угле Φ_{UP} , являющемся остаточной ошибкой азимутальной выставки ИНС. Далее будет показано, как надлежащим выбором интервалов интегрирования Δt обеспечить разделение этих ошибок и их независимое оценивание.

Прямой метод оценивания в задаче полунатурного моделирования ИНС. Под полунатурным моделированием будем понимать задачу имитации показаний чувствительных элементов ИНС, установленной на борту летательного аппарата, включающую три последовательных этапа:

- 1) натурные испытания ИНС на автомобиле для выявления статистических характеристик погрешностей ее гироскопов и акселерометров при эксплуатации на движущемся носителе;
- 2) численное построение траектории движения летательного аппарата на основе знания особенностей его динамики, а также расчет идеализированных значений угловой скорости и кажущегося линейного ускорения, соответствующих этой траектории;
- 3) распространение результатов натурных испытаний (оценок погрешностей датчиков ИНС) на моделируемую траекторию.

При натурных испытаниях движение автомобиля должно быть выбрано таким, чтобы обеспечить наблюдаемость смещений нуля гироскопов и акселерометров, а также ошибки азимутальной выставки. Целесообразно, чтобы оно включало как участки прямолинейного и равномерного движения, так и маневры: разгоны, торможения, повороты.

Первой стадией послемаршрутной обработки показаний датчиков ИНС является оценивание угла Φ_{UP} . Хотя эта величина и не характеризует напрямую погрешности датчиков ИНС, она должна быть предварительно скомпенсирована, чтобы ее влияние не снизило впоследствии точность оценивания собственных ошибок чувствительных элементов.

Выберем интервалы разгона и торможения автомобиля на прямолинейном участке его движения. Поскольку длительность Δt таких маневров обычно не превышает 30 с, в уравнениях (1) можно прене-

бречь слагаемыми $\int\limits_t^t \delta\omega_E dt, \int\limits_t^t \delta\omega_N dt.$ Далее, если считать смещения нуля акселерометров медленно изменяющимися величинами, то при отсутствии поворотов автомобиля на интервале Δt чрезвычайно малыми оказываются также приращения $\Delta \delta f_E$ и $\Delta \delta f_N$. Поэтому

уравнения (1) приобретают вид

$$g\int_{t}^{t+\Delta t}\omega_{E}^{C}dt = \Delta a_{E}\Phi_{UP};$$
$$g\int_{t}^{t+\Delta t}\omega_{N}^{C}dt = \Delta a_{N}\Phi_{UP}.$$

Умножая первое уравнение на Δa_E , второе — на Δa_N и складывая их, получаем расчетную формулу для оценки угла Φ_{UP} :

$$\hat{\Phi}_{UP} = \frac{g}{\Delta a_E^2 + \Delta a_N^2} \left(\Delta a_E \int_t^{t+\Delta t} \omega_E^C dt + \Delta a_N \int_t^{t+\Delta t} \omega_N^C dt \right).$$

Сделаем два замечания о практическом применении полученной формулы. Во-первых, сигналы управляющих угловых скоростей ω_E^C , ω_N^C запаздывают относительно приращений ускорений Δa_E , Δa_N , что обусловлено принципом демпфирования ИНС. Для их синхронизации можно придать сигналам Δa_E , Δa_N такую же задержку, преобразовав их фильтром, передаточная функция которого воспроизводит закон управления демпфируемой ИНС: $W(p) = \frac{K_2 g}{p^2 + K_1 p + K_2 g}$. Такая фильтрация позволяет одновременно снизить уровень шума, содержащегося в оценке $\hat{\Phi}_{UP}$.

Во-вторых, на временных промежутках порядка 10 мин изменение угла Φ_{UP} , вызванное смещением нуля гироскопа вертикальной оси, оказывается много меньше начального значения этого угла, возникшего из-за погрешностей выставки ИНС. Следовательно, допустимо принять $\Phi_{UP} = \text{const}$ и оценки, найденные для нескольких последовательных разгонов и торможений автомобиля, усреднить тем или иным способом.

Второй стадией обработки данных ИНС является оценивание смещений нуля акселерометров. Наблюдаемость этих погрешностей имеет место только при поворотах автомобиля, когда из-за изменения матрицы перехода $C_B^L = [c_{ij}]$ от связанного (B) к географическому (L) трехграннику возникают ненулевые приращения $\Delta \delta f_E$, $\Delta \delta f_N$. Действительно,

$$\begin{bmatrix} \Delta \delta f_E \\ \Delta \delta f_N \\ \Delta \delta f_{UP} \end{bmatrix} = \Delta C_B^L \begin{bmatrix} \delta f_{XB} \\ \delta f_{YB} \\ \delta f_{ZB} \end{bmatrix}$$

или, в предположении, что углы крена и тангажа малы,

$$\left[\begin{array}{c} \Delta \delta f_E \\ \Delta \delta f_N \end{array}\right] = \left[\begin{array}{cc} \Delta c_{11} & \Delta c_{12} \\ \Delta c_{21} & \Delta c_{22} \end{array}\right] \left[\begin{array}{c} \delta f_{XB} \\ \delta f_{YB} \end{array}\right].$$

Подставляя полученное соотношение в уравнения (1), пренебрегая, $t+\Delta t$ $t+\Delta t$

как и прежде, слагаемыми $\int\limits_t^{t+\Delta t}\delta\omega_E dt, \int\limits_t^{t+\Delta t}\delta\omega_N dt,$ а также считая угол

 Φ_{UP} скомпенсированным, можно записать:

$$g \int_{t}^{t+\Delta t} \omega_{E}^{C} dt = -\Delta \delta f_{N}; \quad g \int_{t}^{t+\Delta t} \omega_{N}^{C} dt = \Delta \delta f_{E};$$
$$g \int_{t}^{t+\Delta t} \begin{bmatrix} \omega_{N}^{C} \\ -\omega_{E}^{C} \end{bmatrix} dt = \begin{bmatrix} \Delta c_{11} & \Delta c_{12} \\ \Delta c_{21} & \Delta c_{22} \end{bmatrix} \begin{bmatrix} \delta f_{XB} \\ \delta f_{YB} \end{bmatrix}.$$

Отсюда следует расчетная формула для оценок смещений нуля акселерометров

$$\begin{bmatrix} \delta \hat{f}_{XB} \\ \delta \hat{f}_{YB} \end{bmatrix} = g \begin{bmatrix} \Delta c_{11} & \Delta c_{12} \\ \Delta c_{21} & \Delta c_{22} \end{bmatrix}^{-1} \int_{t}^{t+\Delta t} \begin{bmatrix} \omega_{N}^{C} \\ -\omega_{E}^{C} \end{bmatrix} dt.$$

Обращение матрицы, присутствующее в полученной формуле, осуществимо, если изменение курса автомобиля ΔH за время Δt отлично от нуля и не кратно 360° . Действительно, при этом определитель

$$D = \det \begin{bmatrix} \Delta c_{11} & \Delta c_{12} \\ \Delta c_{21} & \Delta c_{22} \end{bmatrix} = 2 - 2\cos\Delta H \neq 0.$$

Сказанное вполне согласуется с физическими представлениями о наблюдаемости смещений нуля акселерометров ИНС [2].

На третьей стадии послемаршрутной обработки показаний датчиков оцениванию подлежат смещения нуля гироскопов. Обеспечение наблюдаемости этих погрешностей, в отличие от предыдущих, не требует особых условий движения. Таким образом, их оценивание может выполняться непрерывно. Это, в свою очередь, открывает возможности для определения реальной нестабильности смещений нуля гироскопов в течение одного запуска ИНС.

При применении прямого метода оценивания наиболее удобной моделью ошибок гироскопов оказывается волновое описание [3], в котором возмущения задаются последовательностью δ -функций Дирака. Так, кусочно-постоянному смещению нуля $\delta\omega(t)$ соответствует представление

$$\delta \dot{\omega}(t) = \sum_{k} c_k \delta(t - k\Delta t).$$

Импульсы δ -функций при такой модели возникают в производной $\delta \dot{\omega}(t)$ через интервалы времени Δt , порождая ступенчатое измене-

ние величины $\delta\omega(t)$, а коэффициенты c_k определяют интенсивность каждого импульса. Можно утверждать: чем стабильнее смещение нуля гироскопа в одном запуске, тем меньше среднее значение c_k^2 при фиксированном Δt .

Для оценивания с использованием волнового описания разделим время работы системы на равные промежутки длительностью Δt . Учтем, что в бесплатформенных ИНС собственная точность гироскопов характеризуется смещениями нуля, взятыми не в географическом, как в уравнениях (1), а в связанном трехграннике. Поэтому выполним соответствующее преобразование величин путем умножения на матрицу перехода $C_L^B = \left(C_B^L\right)^{\rm T}$. Тогда для каждого промежутка Δt с учетом предварительной компенсации погрешностей $\Phi_{UP}, \delta f_{XB}, \delta f_{YB}$ можно записать

$$\int_{t}^{t+\Delta t} \left(C_{B}^{L}\right)^{\mathsf{T}} \bar{\omega}^{C} dt = \int_{t}^{t+\Delta t} \left(C_{B}^{L}\right)^{\mathsf{T}} \delta \bar{\omega} dt = \int_{t}^{t+\Delta t} \delta \bar{\omega}_{B} dt.$$

В качестве оценки вектора смещений нуля гироскопов ИНС примем среднеинтегральное на промежутке Δt значение

$$\delta \hat{\bar{\omega}}_B = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} (C_B^L)^{\mathrm{T}} \bar{\omega}^C dt.$$

Апробация прямого метода оценивания. Прямой метод оценивания погрешностей был применен к анализу показаний датчиков инерциального измерительного блока Honeywell HG1700. Блок построен на базе лазерных гироскопов, относится к среднему классу точности и имеет согласно спецификации производителя [9] следующие характеристики: среднеквадратическое смещение нуля гироскопов $\sigma[\delta\omega]=1^\circ/\text{ч}$, акселерометров $\sigma[\delta f]=0.01\,\text{m/c}^2$. Испытания блока проводились на автомобиле. Внешним источником информации о скорости служил приемник спутниковой глобальной системы позиционирования (Global Positioning System, GPS) Novatel OEM-3. Число одновременно наблюдаемых спутников изменялось в пределах от 4 по 9

При послемаршрутной обработке был реализован алгоритм демпфируемой бесплатформенной ИНС [2], включающий в себя автономную горизонтальную и азимутальную выставку общей длительностью $800\,\mathrm{c}$. Прямым методом оценивания была определена и скомпенсирована остаточная погрешность азимутальной выставки Φ_{UP} (рис. 2). Для подтверждения корректности процедуры были сопоставлены данные по скорости автономной ИНС до и после оценивания. Из графиков (рис. 3) следует, что компенсация Φ_{UP} позволила исключить нестационарную составляющую ошибки ИНС [2]. При этом переходный

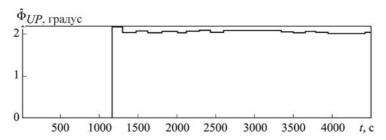


Рис. 2. Оценка погрешности азимутальной выставки

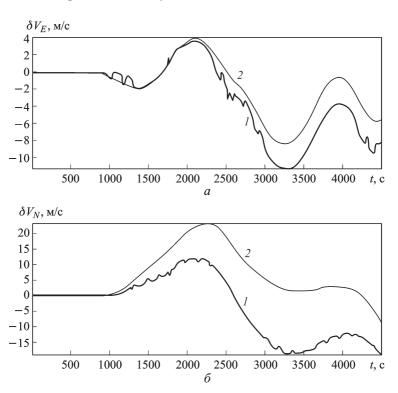


Рис. 3. Погрешности по скорости вдоль восточного (a) и северного (b) направлений автономной ИНС до (I) и после (2) компенсации погрешности азимутальной выставки

процесс практически отсутствует: оценка $\hat{\Phi}_{UP}$, близкая к истинному значению угла, была получена уже при первом разгоне автомобиля — в момент времени $t=1150\,\mathrm{c}$ от включения системы.

Оценивание смещений нуля акселерометров потребовало выделения интервалов времени Δt , на которых автомобиль совершал поворот на угол не менее 75° и не более 285° . В таких поворотах выполнялось условие D>1,5, что обеспечивало хорошую наблюдаемость искомых погрешностей. В интервал включалась также задержка длительностью $10\,\mathrm{c}$ после завершения поворота, необходимая для учета запаздывания сигналов управляющих угловых скоростей ИНС. Первый поворот, удовлетворяющий предъявленным требованиям, имел место в момент

 $t=1850\,\mathrm{c}$. Полученные оценки приведены на рис. 4, a. Найденные смещения нуля столь малы, что не оказывают заметного влияния на поведение погрешностей автономной ИНС по скорости. Поэтому состоятельность оценок подтверждалась косвенно — введением в показания горизонтальных акселерометров дополнительных погрешностей, равных $0{,}002\,\mathrm{m/c^2}$, и повторением процедуры оценивания. Результаты приведены на рис. 4, δ .

После компенсации найденных погрешностей было выполнено оценивание смещений нуля гироскопов непрерывно в течение всего

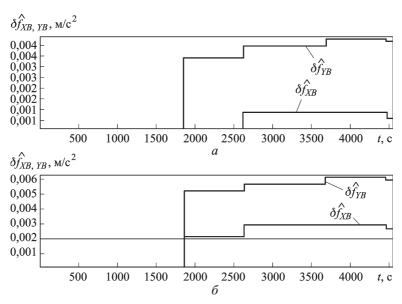


Рис. 4. Оценки смещений нуля акселерометров (a), те же оценки после введения дополнительной погрешности (δ)

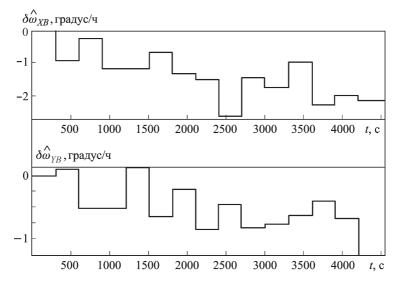


Рис. 5. Оценки смещений нуля гироскопов

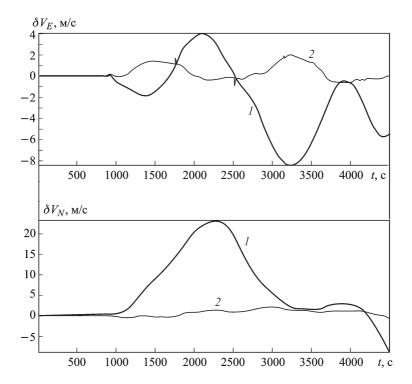


Рис. 6. Погрешности по скорости автономной ИНС до (1) и после (2) компенсации смещений нуля гироскопов

времени работы инерциального измерительного блока, интервал Δt составлял 300 с. Вычитание полученных оценок (рис. 5) из показаний гироскопов позволило многократно уменьшить ошибку автономной ИНС по скорости (рис. 6), что свидетельствует о корректности оценивания.

Выводы. Предложен прямой метод оценивания погрешностей датчиков бесплатформенной ИНС. Метод рассмотрен применительно к задаче полунатурного моделирования ИНС и успешно апробирован в ходе испытаний инерциального измерительного блока среднего класса точности. Получены оценки погрешности азимутальной выставки, а также смещений нуля гироскопов и акселерометров ИНС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б р о м б е р г П. В. Теория инерциальных систем навигации. М.: Наука, 1979. 296 с
- 2. S a l y c h e v O. S. Applied inertial navigation: problems and solutions. M.: BMSTU Press, 2004. 304 p.
- 3. С а л ы ч е в О. С. Волновое описание возмущений в задачах оценки ошибок инерциальных систем навигации. М.: Машиностроение, 1992. 216 с.
- 4. K a l m a n R. E. A new approach to linear filtering and prediction problems // Transactions of the ASME Journal of Basic Engineering. 1960. Vol. 82. Series D. P. 35–45.

- 5. G r e w a 1 M. S., W e i 11 L. R., A n d r e w s A. P. Global positioning systems, inertial navigation, and integration. N.Y.: Wiley, 2001. 392 p.
- 6. V a n d e r M e r w e R., W a n E. A. Sigma-Point Kalman filters for Integrated Navigation // Proc. of the 60th Annual Meeting of the Institute of Navigation (ION), Dayton, OH, June 2004.
- 7. K o n g X. Inertial navigation system algorithms for low cost IMU. Ph. D. thesis. The University of Sydney, 2000. 189 p.
- 8. S a l y t c h e v a A. O. Medium accuracy INS/GPS integration in various GPS environments. M. Sc. thesis. Geomatics Engineering, University of Calgary, 2004. 230 p.
- 9. H G 1 7 0 0 Inertial Measurement Unit. Honeywell International Inc., 2006.

Статья поступила в редакцию 22.01.2010

Василий Михайлович Терешков родился в 1986 г., окончил МГТУ им. Н.Э. Баумана в 2009 г. Аспирант кафедры "Приборы и системы ориентации, стабилизации и навигации" МГТУ им. Н.Э. Баумана . Автор трех научных работ в области алгоритмов инерциальных навигационных систем.

V.M. Tereshkov (b. 1986) graduated from the Bauman Moscow State Technical University in 2009. Post-graduate of "Instruments and Systems of Orientation, Stabilization and Navigation" department of the Bauman Moscow State Technical University. Author of 3 publications in the field of algorithms of inertial navigational systems.

	_